Reference documentation for deal.II version Git e12e976e47 2020-11-24 09:52:11 +0100
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Public Member Functions | Static Public Attributes | Private Attributes | List of all members
TensorProductPolynomialsConst< dim > Class Template Reference

#include <deal.II/base/tensor_product_polynomials.h>

Inheritance diagram for TensorProductPolynomialsConst< dim >:
[legend]

Public Member Functions

template<class Pol >
 TensorProductPolynomialsConst (const std::vector< Pol > &pols)
 
void output_indices (std::ostream &out) const
 
void set_numbering (const std::vector< unsigned int > &renumber)
 
const std::vector< unsigned int > & get_numbering () const
 
const std::vector< unsigned int > & get_numbering_inverse () const
 
void evaluate (const Point< dim > &unit_point, std::vector< double > &values, std::vector< Tensor< 1, dim >> &grads, std::vector< Tensor< 2, dim >> &grad_grads, std::vector< Tensor< 3, dim >> &third_derivatives, std::vector< Tensor< 4, dim >> &fourth_derivatives) const override
 
double compute_value (const unsigned int i, const Point< dim > &p) const override
 
template<int order>
Tensor< order, dim > compute_derivative (const unsigned int i, const Point< dim > &p) const
 
virtual Tensor< 1, dim > compute_1st_derivative (const unsigned int i, const Point< dim > &p) const override
 
virtual Tensor< 2, dim > compute_2nd_derivative (const unsigned int i, const Point< dim > &p) const override
 
virtual Tensor< 3, dim > compute_3rd_derivative (const unsigned int i, const Point< dim > &p) const override
 
virtual Tensor< 4, dim > compute_4th_derivative (const unsigned int i, const Point< dim > &p) const override
 
Tensor< 1, dim > compute_grad (const unsigned int i, const Point< dim > &p) const override
 
Tensor< 2, dim > compute_grad_grad (const unsigned int i, const Point< dim > &p) const override
 
unsigned int n () const
 
std::string name () const override
 
virtual std::unique_ptr< ScalarPolynomialsBase< dim > > clone () const override
 
template<>
double compute_value (const unsigned int, const Point< 0 > &) const
 

Static Public Attributes

static const unsigned int dimension = dim
 

Private Attributes

TensorProductPolynomials< dim > tensor_polys
 
std::vector< unsigned intindex_map
 
std::vector< unsigned intindex_map_inverse
 

Detailed Description

template<int dim>
class TensorProductPolynomialsConst< dim >

Tensor product of given polynomials and a locally constant function. This class inherits most of its functionality from TensorProductPolynomials. It works similarly to that class but adds a constant function for the last index.

Definition at line 39 of file tensor_product_polynomials.h.

Constructor & Destructor Documentation

◆ TensorProductPolynomialsConst()

template<int dim>
template<class Pol >
TensorProductPolynomialsConst< dim >::TensorProductPolynomialsConst ( const std::vector< Pol > &  pols)

Constructor. pols is a vector of objects that should be derived or otherwise convertible to one-dimensional polynomial objects. It will be copied element by element into a private variable.

Member Function Documentation

◆ output_indices()

template<int dim>
void TensorProductPolynomialsConst< dim >::output_indices ( std::ostream &  out) const

Print the list of tensor_polys indices to out.

Definition at line 32 of file tensor_product_polynomials_const.cc.

◆ set_numbering()

template<int dim>
void TensorProductPolynomialsConst< dim >::set_numbering ( const std::vector< unsigned int > &  renumber)

Set the ordering of the polynomials. Requires renumber.size()==tensor_polys.n(). Stores a copy of renumber.

Definition at line 49 of file tensor_product_polynomials_const.cc.

◆ get_numbering()

template<int dim>
const std::vector<unsigned int>& TensorProductPolynomialsConst< dim >::get_numbering ( ) const

Give read access to the renumber vector.

◆ get_numbering_inverse()

template<int dim>
const std::vector<unsigned int>& TensorProductPolynomialsConst< dim >::get_numbering_inverse ( ) const

Give read access to the inverse renumber vector.

◆ evaluate()

template<int dim>
void TensorProductPolynomialsConst< dim >::evaluate ( const Point< dim > &  unit_point,
std::vector< double > &  values,
std::vector< Tensor< 1, dim >> &  grads,
std::vector< Tensor< 2, dim >> &  grad_grads,
std::vector< Tensor< 3, dim >> &  third_derivatives,
std::vector< Tensor< 4, dim >> &  fourth_derivatives 
) const
override

Compute the value and the first and second derivatives of each tensor product polynomial at unit_point.

The size of the vectors must either be equal 0 or equal n(). In the first case, the function will not compute these values.

If you need values or derivatives of all tensor product polynomials then use this function, rather than using any of the compute_value(), compute_grad() or compute_grad_grad() functions, see below, in a loop over all tensor product polynomials.

Definition at line 129 of file tensor_product_polynomials_const.cc.

◆ compute_value() [1/2]

template<int dim>
double TensorProductPolynomialsConst< dim >::compute_value ( const unsigned int  i,
const Point< dim > &  p 
) const
override

Compute the value of the ith tensor product polynomial at unit_point. Here i is given in tensor product numbering.

Note, that using this function within a loop over all tensor product polynomials is not efficient, because then each point value of the underlying (one-dimensional) polynomials is (unnecessarily) computed several times. Instead use the evaluate() function with values.size()==n() to get the point values of all tensor polynomials all at once and in a much more efficient way.

Definition at line 69 of file tensor_product_polynomials_const.cc.

◆ compute_derivative()

template<int dim>
template<int order>
Tensor<order, dim> TensorProductPolynomialsConst< dim >::compute_derivative ( const unsigned int  i,
const Point< dim > &  p 
) const

Compute the orderth derivative of the ith tensor product polynomial at unit_point. Here i is given in tensor product numbering.

Note, that using this function within a loop over all tensor product polynomials is not efficient, because then each derivative value of the underlying (one-dimensional) polynomials is (unnecessarily) computed several times. Instead use the evaluate() function, see above, with the size of the appropriate parameter set to n() to get the point value of all tensor polynomials all at once and in a much more efficient way.

Template Parameters
orderThe derivative order.

◆ compute_1st_derivative()

template<int dim>
virtual Tensor<1, dim> TensorProductPolynomialsConst< dim >::compute_1st_derivative ( const unsigned int  i,
const Point< dim > &  p 
) const
overridevirtual

Compute the first derivative of the ith polynomial at unit point p.

Consider using evaluate() instead.

◆ compute_2nd_derivative()

template<int dim>
virtual Tensor<2, dim> TensorProductPolynomialsConst< dim >::compute_2nd_derivative ( const unsigned int  i,
const Point< dim > &  p 
) const
overridevirtual

Compute the second derivative of the ith polynomial at unit point p.

Consider using evaluate() instead.

◆ compute_3rd_derivative()

template<int dim>
virtual Tensor<3, dim> TensorProductPolynomialsConst< dim >::compute_3rd_derivative ( const unsigned int  i,
const Point< dim > &  p 
) const
overridevirtual

Compute the third derivative of the ith polynomial at unit point p.

Consider using evaluate() instead.

◆ compute_4th_derivative()

template<int dim>
virtual Tensor<4, dim> TensorProductPolynomialsConst< dim >::compute_4th_derivative ( const unsigned int  i,
const Point< dim > &  p 
) const
overridevirtual

Compute the fourth derivative of the ith polynomial at unit point p.

Consider using evaluate() instead.

◆ compute_grad()

template<int dim>
Tensor< 1, dim > TensorProductPolynomialsConst< dim >::compute_grad ( const unsigned int  i,
const Point< dim > &  p 
) const
override

Compute the grad of the ith tensor product polynomial at unit_point. Here i is given in tensor product numbering.

Note, that using this function within a loop over all tensor product polynomials is not efficient, because then each derivative value of the underlying (one-dimensional) polynomials is (unnecessarily) computed several times. Instead use the evaluate() function, see above, with grads.size()==n() to get the point value of all tensor polynomials all at once and in a much more efficient way.

Definition at line 97 of file tensor_product_polynomials_const.cc.

◆ compute_grad_grad()

template<int dim>
Tensor< 2, dim > TensorProductPolynomialsConst< dim >::compute_grad_grad ( const unsigned int  i,
const Point< dim > &  p 
) const
override

Compute the second derivative (grad_grad) of the ith tensor product polynomial at unit_point. Here i is given in tensor product numbering.

Note, that using this function within a loop over all tensor product polynomials is not efficient, because then each derivative value of the underlying (one-dimensional) polynomials is (unnecessarily) computed several times. Instead use the evaluate() function, see above, with grad_grads.size()==n() to get the point value of all tensor polynomials all at once and in a much more efficient way.

Definition at line 113 of file tensor_product_polynomials_const.cc.

◆ n()

template<int dim>
unsigned int TensorProductPolynomialsConst< dim >::n ( ) const

Return the number of tensor product polynomials plus the constant function. For n 1d polynomials this is ndim+1.

◆ name()

template<int dim>
std::string TensorProductPolynomialsConst< dim >::name ( ) const
override

Return the name of the space, which is TensorProductPolynomialsConst.

◆ clone()

template<int dim>
std::unique_ptr< ScalarPolynomialsBase< dim > > TensorProductPolynomialsConst< dim >::clone ( ) const
overridevirtual

A sort of virtual copy constructor, this function returns a copy of the polynomial space object. Derived classes need to override the function here in this base class and return an object of the same type as the derived class.

Some places in the library, for example the constructors of FE_Poly, need to make copies of polynomial spaces without knowing their exact type. They do so through this function.

Definition at line 205 of file tensor_product_polynomials_const.cc.

◆ compute_value() [2/2]

template<>
double TensorProductPolynomialsConst< 0 >::compute_value ( const unsigned  int,
const Point< 0 > &   
) const

Definition at line 87 of file tensor_product_polynomials_const.cc.

Member Data Documentation

◆ dimension

template<int dim>
const unsigned int TensorProductPolynomialsConst< dim >::dimension = dim
static

Access to the dimension of this object, for checking and automatic setting of dimension in other classes.

Definition at line 53 of file tensor_product_polynomials_const.h.

◆ tensor_polys

template<int dim>
TensorProductPolynomials<dim> TensorProductPolynomialsConst< dim >::tensor_polys
private

The TensorProductPolynomials object

Definition at line 224 of file tensor_product_polynomials_const.h.

◆ index_map

template<int dim>
std::vector<unsigned int> TensorProductPolynomialsConst< dim >::index_map
private

Index map for reordering the polynomials.

Definition at line 229 of file tensor_product_polynomials_const.h.

◆ index_map_inverse

template<int dim>
std::vector<unsigned int> TensorProductPolynomialsConst< dim >::index_map_inverse
private

Index map for reordering the polynomials.

Definition at line 234 of file tensor_product_polynomials_const.h.


The documentation for this class was generated from the following files: