Reference documentation for deal.II version GIT c14369f203 2023-10-01 07:40:02+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
tensor_product_polynomials_const.cc
Go to the documentation of this file.
1 // ---------------------------------------------------------------------
2 //
3 // Copyright (C) 2012 - 2020 by the deal.II authors
4 //
5 // This file is part of the deal.II library.
6 //
7 // The deal.II library is free software; you can use it, redistribute
8 // it, and/or modify it under the terms of the GNU Lesser General
9 // Public License as published by the Free Software Foundation; either
10 // version 2.1 of the License, or (at your option) any later version.
11 // The full text of the license can be found in the file LICENSE.md at
12 // the top level directory of deal.II.
13 //
14 // ---------------------------------------------------------------------
15 
16 
19 
20 #include <memory>
21 
23 
24 
25 
26 /* ------------------- TensorProductPolynomialsConst -------------- */
27 
28 
29 
30 template <int dim>
31 void
33 {
34  std::array<unsigned int, dim> ix;
35  for (unsigned int i = 0; i < tensor_polys.n(); ++i)
36  {
37  tensor_polys.compute_index(i, ix);
38  out << i << "\t";
39  for (unsigned int d = 0; d < dim; ++d)
40  out << ix[d] << " ";
41  out << std::endl;
42  }
43 }
44 
45 
46 
47 template <int dim>
48 void
50  const std::vector<unsigned int> &renumber)
51 {
52  Assert(renumber.size() == index_map.size(),
53  ExcDimensionMismatch(renumber.size(), index_map.size()));
54 
55  index_map = renumber;
56  for (unsigned int i = 0; i < index_map.size(); ++i)
57  index_map_inverse[index_map[i]] = i;
58 
59  std::vector<unsigned int> renumber_base;
60  for (unsigned int i = 0; i < tensor_polys.n(); ++i)
61  renumber_base.push_back(renumber[i]);
62 
63  tensor_polys.set_numbering(renumber_base);
64 }
65 
66 
67 template <int dim>
68 double
70  const Point<dim> &p) const
71 {
72  const unsigned int max_indices = tensor_polys.n();
73  Assert(i <= max_indices, ExcInternalError());
74 
75  // treat the regular basis functions
76  if (i < max_indices)
77  return tensor_polys.compute_value(i, p);
78  else
79  // this is for the constant function
80  return 1.;
81 }
82 
83 
84 
85 template <>
86 double
88  const Point<0> &) const
89 {
90  Assert(false, ExcNotImplemented());
91  return 0.;
92 }
93 
94 
95 template <int dim>
98  const Point<dim> &p) const
99 {
100  const unsigned int max_indices = tensor_polys.n();
101  Assert(i <= max_indices, ExcInternalError());
102 
103  // treat the regular basis functions
104  if (i < max_indices)
105  return tensor_polys.compute_grad(i, p);
106  else
107  // this is for the constant function
108  return Tensor<1, dim>();
109 }
110 
111 template <int dim>
114  const Point<dim> &p) const
115 {
116  const unsigned int max_indices = tensor_polys.n();
117  Assert(i <= max_indices, ExcInternalError());
118 
119  // treat the regular basis functions
120  if (i < max_indices)
121  return tensor_polys.compute_grad_grad(i, p);
122  else
123  // this is for the constant function
124  return Tensor<2, dim>();
125 }
126 
127 template <int dim>
128 void
130  const Point<dim> &p,
131  std::vector<double> &values,
132  std::vector<Tensor<1, dim>> &grads,
133  std::vector<Tensor<2, dim>> &grad_grads,
134  std::vector<Tensor<3, dim>> &third_derivatives,
135  std::vector<Tensor<4, dim>> &fourth_derivatives) const
136 {
137  Assert(values.size() == tensor_polys.n() + 1 || values.empty(),
138  ExcDimensionMismatch2(values.size(), tensor_polys.n() + 1, 0));
139  Assert(grads.size() == tensor_polys.n() + 1 || grads.empty(),
140  ExcDimensionMismatch2(grads.size(), tensor_polys.n() + 1, 0));
141  Assert(grad_grads.size() == tensor_polys.n() + 1 || grad_grads.empty(),
142  ExcDimensionMismatch2(grad_grads.size(), tensor_polys.n() + 1, 0));
143  Assert(third_derivatives.size() == tensor_polys.n() + 1 ||
144  third_derivatives.empty(),
145  ExcDimensionMismatch2(third_derivatives.size(),
146  tensor_polys.n() + 1,
147  0));
148  Assert(fourth_derivatives.size() == tensor_polys.n() + 1 ||
149  fourth_derivatives.empty(),
150  ExcDimensionMismatch2(fourth_derivatives.size(),
151  tensor_polys.n() + 1,
152  0));
153 
154  // remove slot for const value, go into the base class compute method and
155  // finally append the const value again
156  bool do_values = false, do_grads = false, do_grad_grads = false;
157  bool do_3rd_derivatives = false, do_4th_derivatives = false;
158  if (values.empty() == false)
159  {
160  values.pop_back();
161  do_values = true;
162  }
163  if (grads.empty() == false)
164  {
165  grads.pop_back();
166  do_grads = true;
167  }
168  if (grad_grads.empty() == false)
169  {
170  grad_grads.pop_back();
171  do_grad_grads = true;
172  }
173  if (third_derivatives.empty() == false)
174  {
175  third_derivatives.resize(tensor_polys.n());
176  do_3rd_derivatives = true;
177  }
178  if (fourth_derivatives.empty() == false)
179  {
180  fourth_derivatives.resize(tensor_polys.n());
181  do_4th_derivatives = true;
182  }
183 
184  tensor_polys.evaluate(
185  p, values, grads, grad_grads, third_derivatives, fourth_derivatives);
186 
187  // for dgq node: values =1, grads=0, grads_grads=0, third_derivatives=0,
188  // fourth_derivatives=0
189  if (do_values)
190  values.push_back(1.);
191  if (do_grads)
192  grads.emplace_back();
193  if (do_grad_grads)
194  grad_grads.emplace_back();
195  if (do_3rd_derivatives)
196  third_derivatives.emplace_back();
197  if (do_4th_derivatives)
198  fourth_derivatives.emplace_back();
199 }
200 
201 
202 
203 template <int dim>
204 std::unique_ptr<ScalarPolynomialsBase<dim>>
206 {
207  return std::make_unique<TensorProductPolynomialsConst<dim>>(*this);
208 }
209 
210 
211 /* ------------------- explicit instantiations -------------- */
212 template class TensorProductPolynomialsConst<1>;
213 template class TensorProductPolynomialsConst<2>;
214 template class TensorProductPolynomialsConst<3>;
215 
Definition: point.h:112
void output_indices(std::ostream &out) const
void evaluate(const Point< dim > &unit_point, std::vector< double > &values, std::vector< Tensor< 1, dim >> &grads, std::vector< Tensor< 2, dim >> &grad_grads, std::vector< Tensor< 3, dim >> &third_derivatives, std::vector< Tensor< 4, dim >> &fourth_derivatives) const override
double compute_value(const unsigned int i, const Point< dim > &p) const override
Tensor< 1, dim > compute_grad(const unsigned int i, const Point< dim > &p) const override
virtual std::unique_ptr< ScalarPolynomialsBase< dim > > clone() const override
void set_numbering(const std::vector< unsigned int > &renumber)
Tensor< 2, dim > compute_grad_grad(const unsigned int i, const Point< dim > &p) const override
#define DEAL_II_NAMESPACE_OPEN
Definition: config.h:477
#define DEAL_II_NAMESPACE_CLOSE
Definition: config.h:478
static ::ExceptionBase & ExcInternalError()
static ::ExceptionBase & ExcDimensionMismatch(std::size_t arg1, std::size_t arg2)
#define Assert(cond, exc)
Definition: exceptions.h:1616
static ::ExceptionBase & ExcNotImplemented()
static ::ExceptionBase & ExcDimensionMismatch2(std::size_t arg1, std::size_t arg2, std::size_t arg3)
SymmetricTensor< 2, dim, Number > d(const Tensor< 2, dim, Number > &F, const Tensor< 2, dim, Number > &dF_dt)