Reference documentation for deal.II version Git 0709173063 2020-07-07 17:27:54 -0400
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
scalar_polynomials_base.h
Go to the documentation of this file.
1 // ---------------------------------------------------------------------
2 //
3 // Copyright (C) 2005 - 2020 by the deal.II authors
4 //
5 // This file is part of the deal.II library.
6 //
7 // The deal.II library is free software; you can use it, redistribute
8 // it, and/or modify it under the terms of the GNU Lesser General
9 // Public License as published by the Free Software Foundation; either
10 // version 2.1 of the License, or (at your option) any later version.
11 // The full text of the license can be found in the file LICENSE.md at
12 // the top level directory of deal.II.
13 //
14 // ---------------------------------------------------------------------
15 
16 #ifndef dealii_scalar_polynomials_base_h
17 #define dealii_scalar_polynomials_base_h
18 
19 
20 #include <deal.II/base/config.h>
21 
23 #include <deal.II/base/point.h>
24 #include <deal.II/base/tensor.h>
25 
26 #include <vector>
27 
29 
60 template <int dim>
62 {
63 public:
68  ScalarPolynomialsBase(const unsigned int deg,
69  const unsigned int n_polynomials);
70 
74  ScalarPolynomialsBase(ScalarPolynomialsBase<dim> &&) = default; // NOLINT
75 
80 
85  virtual ~ScalarPolynomialsBase() = default;
86 
99  virtual void
100  evaluate(const Point<dim> & unit_point,
101  std::vector<double> & values,
102  std::vector<Tensor<1, dim>> &grads,
103  std::vector<Tensor<2, dim>> &grad_grads,
104  std::vector<Tensor<3, dim>> &third_derivatives,
105  std::vector<Tensor<4, dim>> &fourth_derivatives) const = 0;
106 
113  virtual double
114  compute_value(const unsigned int /*i*/, const Point<dim> & /*p*/) const = 0;
115 
124  template <int order>
126  compute_derivative(const unsigned int i, const Point<dim> &p) const;
127 
134  virtual Tensor<1, dim>
135  compute_1st_derivative(const unsigned int i, const Point<dim> &p) const = 0;
136 
143  virtual Tensor<2, dim>
144  compute_2nd_derivative(const unsigned int i, const Point<dim> &p) const = 0;
145 
152  virtual Tensor<3, dim>
153  compute_3rd_derivative(const unsigned int i, const Point<dim> &p) const = 0;
154 
161  virtual Tensor<4, dim>
162  compute_4th_derivative(const unsigned int i, const Point<dim> &p) const = 0;
163 
170  virtual Tensor<1, dim>
171  compute_grad(const unsigned int /*i*/, const Point<dim> & /*p*/) const = 0;
172 
179  virtual Tensor<2, dim>
180  compute_grad_grad(const unsigned int /*i*/,
181  const Point<dim> & /*p*/) const = 0;
182 
186  unsigned int
187  n() const;
188 
194  virtual unsigned int
195  degree() const;
196 
207  virtual std::unique_ptr<ScalarPolynomialsBase<dim>>
208  clone() const = 0;
209 
213  virtual std::string
214  name() const = 0;
215 
219  virtual std::size_t
220  memory_consumption() const;
221 
222 private:
226  const unsigned int polynomial_degree;
227 
231  const unsigned int n_pols;
232 };
233 
234 
235 
236 template <int dim>
237 inline unsigned int
239 {
240  return n_pols;
241 }
242 
243 
244 
245 template <int dim>
246 inline unsigned int
248 {
249  return polynomial_degree;
250 }
251 
252 
253 
254 template <int dim>
255 template <int order>
256 inline Tensor<order, dim>
258  const Point<dim> & p) const
259 {
260  if (order == 1)
261  {
262  auto derivative = compute_1st_derivative(i, p);
263  return *reinterpret_cast<Tensor<order, dim> *>(&derivative);
264  }
265  if (order == 2)
266  {
267  auto derivative = compute_2nd_derivative(i, p);
268  return *reinterpret_cast<Tensor<order, dim> *>(&derivative);
269  }
270  if (order == 3)
271  {
272  auto derivative = compute_3rd_derivative(i, p);
273  return *reinterpret_cast<Tensor<order, dim> *>(&derivative);
274  }
275  if (order == 4)
276  {
277  auto derivative = compute_4th_derivative(i, p);
278  return *reinterpret_cast<Tensor<order, dim> *>(&derivative);
279  }
280  Assert(false, ExcNotImplemented());
281  Tensor<order, dim> empty;
282  return empty;
283 }
284 
286 
287 #endif
virtual ~ScalarPolynomialsBase()=default
virtual std::string name() const =0
virtual std::unique_ptr< ScalarPolynomialsBase< dim > > clone() const =0
virtual double compute_value(const unsigned int, const Point< dim > &) const =0
virtual unsigned int degree() const
virtual Tensor< 1, dim > compute_1st_derivative(const unsigned int i, const Point< dim > &p) const =0
virtual Tensor< 2, dim > compute_2nd_derivative(const unsigned int i, const Point< dim > &p) const =0
ScalarPolynomialsBase(const unsigned int deg, const unsigned int n_polynomials)
#define Assert(cond, exc)
Definition: exceptions.h:1403
virtual void evaluate(const Point< dim > &unit_point, std::vector< double > &values, std::vector< Tensor< 1, dim >> &grads, std::vector< Tensor< 2, dim >> &grad_grads, std::vector< Tensor< 3, dim >> &third_derivatives, std::vector< Tensor< 4, dim >> &fourth_derivatives) const =0
const unsigned int polynomial_degree
#define DEAL_II_NAMESPACE_CLOSE
Definition: config.h:363
Tensor< order, dim > compute_derivative(const unsigned int i, const Point< dim > &p) const
virtual Tensor< 3, dim > compute_3rd_derivative(const unsigned int i, const Point< dim > &p) const =0
#define DEAL_II_NAMESPACE_OPEN
Definition: config.h:362
virtual std::size_t memory_consumption() const
virtual Tensor< 1, dim > compute_grad(const unsigned int, const Point< dim > &) const =0
virtual Tensor< 2, dim > compute_grad_grad(const unsigned int, const Point< dim > &) const =0
static ::ExceptionBase & ExcNotImplemented()
virtual Tensor< 4, dim > compute_4th_derivative(const unsigned int i, const Point< dim > &p) const =0