![]() |
Reference documentation for deal.II version Git 5b8b897cb2 2021-04-22 22:24:19 -0400
|
#include <deal.II/base/function_lib.h>
Public Types | |
using | time_type = typename FunctionTime< typename numbers::NumberTraits< double >::real_type >::time_type |
Public Member Functions | |
CutOffFunctionLinfty (const double radius=1., const Point< dim >=Point< dim >(), const unsigned int n_components=1, const unsigned int select=CutOffFunctionBase< dim >::no_component, const bool integrate_to_one=false) | |
virtual double | value (const Point< dim > &p, const unsigned int component=0) const override |
virtual void | value_list (const std::vector< Point< dim >> &points, std::vector< double > &values, const unsigned int component=0) const override |
virtual void | vector_value_list (const std::vector< Point< dim >> &points, std::vector< Vector< double >> &values) const override |
virtual void | set_center (const Point< dim > &p) |
virtual void | set_radius (const double r) |
const Point< dim > & | get_center () const |
double | get_radius () const |
bool | integrates_to_one () const |
virtual void | vector_value (const Point< dim > &p, Vector< double > &values) const |
virtual void | vector_values (const std::vector< Point< dim >> &points, std::vector< std::vector< double >> &values) const |
virtual Tensor< 1, dim, double > | gradient (const Point< dim > &p, const unsigned int component=0) const |
virtual void | vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim, double >> &gradients) const |
virtual void | gradient_list (const std::vector< Point< dim >> &points, std::vector< Tensor< 1, dim, double >> &gradients, const unsigned int component=0) const |
virtual void | vector_gradients (const std::vector< Point< dim >> &points, std::vector< std::vector< Tensor< 1, dim, double >>> &gradients) const |
virtual void | vector_gradient_list (const std::vector< Point< dim >> &points, std::vector< std::vector< Tensor< 1, dim, double >>> &gradients) const |
virtual double | laplacian (const Point< dim > &p, const unsigned int component=0) const |
virtual void | vector_laplacian (const Point< dim > &p, Vector< double > &values) const |
virtual void | laplacian_list (const std::vector< Point< dim >> &points, std::vector< double > &values, const unsigned int component=0) const |
virtual void | vector_laplacian_list (const std::vector< Point< dim >> &points, std::vector< Vector< double >> &values) const |
virtual SymmetricTensor< 2, dim, double > | hessian (const Point< dim > &p, const unsigned int component=0) const |
virtual void | vector_hessian (const Point< dim > &p, std::vector< SymmetricTensor< 2, dim, double >> &values) const |
virtual void | hessian_list (const std::vector< Point< dim >> &points, std::vector< SymmetricTensor< 2, dim, double >> &values, const unsigned int component=0) const |
virtual void | vector_hessian_list (const std::vector< Point< dim >> &points, std::vector< std::vector< SymmetricTensor< 2, dim, double >>> &values) const |
virtual std::size_t | memory_consumption () const |
Number | get_time () const |
virtual void | set_time (const Number new_time) |
virtual void | advance_time (const Number delta_t) |
template<class Archive > | |
void | serialize (Archive &ar, const unsigned int version) |
Subscriptor functionality | |
Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class. | |
void | subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
void | unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const |
unsigned int | n_subscriptions () const |
template<typename StreamType > | |
void | list_subscribers (StreamType &stream) const |
void | list_subscribers () const |
Static Public Member Functions | |
static ::ExceptionBase & | ExcInUse (int arg1, std::string arg2, std::string arg3) |
static ::ExceptionBase & | ExcNoSubscriber (std::string arg1, std::string arg2) |
Public Attributes | |
const unsigned int | n_components |
Static Public Attributes | |
static const unsigned int | no_component = numbers::invalid_unsigned_int |
static const unsigned int | dimension |
Protected Attributes | |
Point< dim > | center |
double | radius |
const unsigned int | selected |
bool | integrate_to_one |
const double | unitary_integral_value |
double | rescaling |
Cut-off function in L-infinity for an arbitrary ball. This function is the characteristic function of a ball around center
with a specified radius
, that is,
\[ f = \chi(B_r(c)). \]
If vector valued, it can be restricted to a single component.
Definition at line 1106 of file function_lib.h.
|
inherited |
The scalar-valued real type used for representing time.
Definition at line 170 of file function.h.
Functions::CutOffFunctionLinfty< dim >::CutOffFunctionLinfty | ( | const double | radius = 1. , |
const Point< dim > | p = Point<dim>() , |
||
const unsigned int | n_components = 1 , |
||
const unsigned int | select = CutOffFunctionBase<dim>::no_component , |
||
const bool | integrate_to_one = false |
||
) |
Constructor. Arguments are the center of the ball and its radius.
If an argument select
is given and not -1, the cut-off function will be non-zero for this component only.
Definition at line 202 of file function_lib_cutoff.cc.
|
overridevirtual |
Function value at one point.
Reimplemented from Function< dim >.
Definition at line 219 of file function_lib_cutoff.cc.
|
overridevirtual |
Function values at multiple points.
Reimplemented from Function< dim >.
Definition at line 231 of file function_lib_cutoff.cc.
|
overridevirtual |
Function values at multiple points.
Reimplemented from Function< dim >.
Definition at line 253 of file function_lib_cutoff.cc.
|
virtualinherited |
Set the center of the ball to the point p
.
Reimplemented in Functions::CutOffFunctionTensorProduct< dim >.
Definition at line 54 of file function_lib_cutoff.cc.
|
virtualinherited |
Set the radius of the ball to r
Reimplemented in Functions::CutOffFunctionTensorProduct< dim >.
Definition at line 72 of file function_lib_cutoff.cc.
|
inherited |
Return the center stored in this object.
Definition at line 63 of file function_lib_cutoff.cc.
|
inherited |
Return the radius stored in this object.
Definition at line 87 of file function_lib_cutoff.cc.
|
inherited |
Return a boolean indicating whether this function integrates to one.
Definition at line 96 of file function_lib_cutoff.cc.
|
virtualinherited |
Return all components of a vector-valued function at a given point.
values
shall have the right size beforehand, i.e. n_components.
The default implementation will call value() for each component.
Reimplemented in Functions::Monomial< dim >, FunctionParser< dim >, FunctionParser< spacedim >, Functions::CosineGradFunction< dim >, Functions::ParsedFunction< dim >, Functions::FlowFunction< dim >, Functions::FlowFunction< 2 >, FunctionDerivative< dim >, and Functions::SquareFunction< dim >.
|
virtualinherited |
For each component of the function, fill a vector of values, one for each point.
The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.
Reimplemented in Functions::StokesCosine< dim >, Functions::PoisseuilleFlow< dim >, Functions::FlowFunction< dim >, and Functions::FlowFunction< 2 >.
|
virtualinherited |
Return the gradient of the specified component of the function at the given point.
Reimplemented in Functions::Polynomial< dim >, Functions::InterpolatedUniformGridData< dim >, Functions::InterpolatedTensorProductGridData< dim >, Functions::Monomial< dim >, Functions::CutOffFunctionCinfty< dim >, Functions::CutOffFunctionC1< dim >, Functions::CutOffFunctionTensorProduct< dim >, Functions::FourierCosineSum< dim >, Functions::FourierSineSum< dim >, Functions::FourierSineFunction< dim >, Functions::FourierCosineFunction< dim >, Functions::JumpFunction< dim >, Functions::SlitSingularityFunction< dim >, Functions::ExpFunction< dim >, Functions::CosineGradFunction< dim >, Functions::CosineFunction< dim >, Functions::PillowFunction< dim >, AutoDerivativeFunction< dim >, Functions::Q1WedgeFunction< dim >, Functions::CSpline< dim >, Functions::Spherical< dim >, Functions::SquareFunction< dim >, and Functions::Bessel1< dim >.
|
virtualinherited |
Return the gradient of all components of the function at the given point.
|
virtualinherited |
Set gradients
to the gradients of the specified component of the function at the points
. It is assumed that gradients
already has the right size, i.e. the same size as the points
array.
|
virtualinherited |
For each component of the function, fill a vector of gradient values, one for each point.
The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.
|
virtualinherited |
Set gradients
to the gradients of the function at the points
, for all components. It is assumed that gradients
already has the right size, i.e. the same size as the points
array.
The outer loop over gradients
is over the points in the list, the inner loop over the different components of the function.
|
virtualinherited |
Compute the Laplacian of a given component at point p
.
Reimplemented in Functions::FourierCosineSum< dim >, Functions::FourierSineSum< dim >, Functions::FourierSineFunction< dim >, Functions::FourierCosineFunction< dim >, Functions::JumpFunction< dim >, Functions::SlitSingularityFunction< dim >, Functions::ExpFunction< dim >, Functions::CosineGradFunction< dim >, Functions::CosineFunction< dim >, Functions::PillowFunction< dim >, Functions::Q1WedgeFunction< dim >, Functions::CSpline< dim >, and Functions::SquareFunction< dim >.
|
virtualinherited |
Compute the Laplacian of all components at point p
and store them in values
.
|
virtualinherited |
Compute the Laplacian of one component at a set of points.
Reimplemented in Functions::JumpFunction< dim >, Functions::SlitSingularityFunction< dim >, Functions::ExpFunction< dim >, Functions::CosineFunction< dim >, Functions::PillowFunction< dim >, Functions::Q1WedgeFunction< dim >, and Functions::SquareFunction< dim >.
|
virtualinherited |
Compute the Laplacians of all components at a set of points.
Reimplemented in Functions::FlowFunction< dim >, and Functions::FlowFunction< 2 >.
|
virtualinherited |
Compute the Hessian of a given component at point p
, that is the gradient of the gradient of the function.
Reimplemented in Functions::CosineFunction< dim >, Functions::CSpline< dim >, and Functions::Spherical< dim >.
|
virtualinherited |
Compute the Hessian of all components at point p
and store them in values
.
|
virtualinherited |
Compute the Hessian of one component at a set of points.
|
virtualinherited |
Compute the Hessians of all components at a set of points.
Return an estimate for the memory consumption, in bytes, of this object.
This function is virtual and can be overloaded by derived classes.
Reimplemented in Functions::Polynomial< dim >, Functions::InterpolatedUniformGridData< dim >, Functions::InterpolatedTensorProductGridData< dim >, Functions::JumpFunction< dim >, Functions::FlowFunction< dim >, Functions::FlowFunction< 2 >, Functions::CSpline< dim >, FunctionDerivative< dim >, and Functions::Spherical< dim >.
|
inherited |
Return the value of the time variable.
|
virtualinherited |
Set the time to new_time
, overwriting the old value.
|
virtualinherited |
Advance the time by the given time step delta_t
.
|
inherited |
Subscribes a user of the object by storing the pointer validity
. The subscriber may be identified by text supplied as identifier
.
Definition at line 136 of file subscriptor.cc.
|
inherited |
Unsubscribes a user from the object.
identifier
and the validity
pointer must be the same as the one supplied to subscribe(). Definition at line 156 of file subscriptor.cc.
|
inlineinherited |
Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.
Definition at line 301 of file subscriptor.h.
|
inlineinherited |
List the subscribers to the input stream
.
Definition at line 318 of file subscriptor.h.
|
inherited |
List the subscribers to deallog
.
Definition at line 204 of file subscriptor.cc.
|
inlineinherited |
Read or write the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.
This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.
Definition at line 310 of file subscriptor.h.
|
staticinherited |
Value used in the constructor of this and derived classes to denote that no component is selected.
Definition at line 932 of file function_lib.h.
|
protectedinherited |
Center of the integration ball.
Definition at line 996 of file function_lib.h.
|
protectedinherited |
Radius of the ball.
Definition at line 1001 of file function_lib.h.
|
protectedinherited |
Component selected. If no_component
, the function is the same in all components.
Definition at line 1007 of file function_lib.h.
|
protectedinherited |
Flag that controls whether we rescale the value when the radius changes.
Definition at line 1012 of file function_lib.h.
|
protectedinherited |
The reference integral value. Derived classes should specify what their integral is when radius
= 1.0.
Definition at line 1018 of file function_lib.h.
|
protectedinherited |
Current rescaling to apply the cut-off function.
Definition at line 1023 of file function_lib.h.
Export the value of the template parameter as a static member constant. Sometimes useful for some expression template programming.
Definition at line 159 of file function.h.
Number of vector components.
Definition at line 164 of file function.h.