Reference documentation for deal.II version Git 040c6ad7d4 2020-09-26 18:01:03 +0200
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Static Public Attributes | Private Attributes | List of all members
Functions::InterpolatedUniformGridData< dim > Class Template Reference

#include <deal.II/base/function_lib.h>

Inheritance diagram for Functions::InterpolatedUniformGridData< dim >:
[legend]

Public Types

using time_type = typename FunctionTime< typename numbers::NumberTraits< double >::real_type >::time_type
 

Public Member Functions

 InterpolatedUniformGridData (const std::array< std::pair< double, double >, dim > &interval_endpoints, const std::array< unsigned int, dim > &n_subintervals, const Table< dim, double > &data_values)
 
virtual double value (const Point< dim > &p, const unsigned int component=0) const override
 
virtual Tensor< 1, dim > gradient (const Point< dim > &p, const unsigned int component=0) const override
 
virtual void vector_value (const Point< dim > &p, Vector< double > &values) const
 
virtual void value_list (const std::vector< Point< dim >> &points, std::vector< double > &values, const unsigned int component=0) const
 
virtual void vector_value_list (const std::vector< Point< dim >> &points, std::vector< Vector< double >> &values) const
 
virtual void vector_values (const std::vector< Point< dim >> &points, std::vector< std::vector< double >> &values) const
 
virtual void vector_gradient (const Point< dim > &p, std::vector< Tensor< 1, dim, double >> &gradients) const
 
virtual void gradient_list (const std::vector< Point< dim >> &points, std::vector< Tensor< 1, dim, double >> &gradients, const unsigned int component=0) const
 
virtual void vector_gradients (const std::vector< Point< dim >> &points, std::vector< std::vector< Tensor< 1, dim, double >>> &gradients) const
 
virtual void vector_gradient_list (const std::vector< Point< dim >> &points, std::vector< std::vector< Tensor< 1, dim, double >>> &gradients) const
 
virtual double laplacian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_laplacian (const Point< dim > &p, Vector< double > &values) const
 
virtual void laplacian_list (const std::vector< Point< dim >> &points, std::vector< double > &values, const unsigned int component=0) const
 
virtual void vector_laplacian_list (const std::vector< Point< dim >> &points, std::vector< Vector< double >> &values) const
 
virtual SymmetricTensor< 2, dim, doublehessian (const Point< dim > &p, const unsigned int component=0) const
 
virtual void vector_hessian (const Point< dim > &p, std::vector< SymmetricTensor< 2, dim, double >> &values) const
 
virtual void hessian_list (const std::vector< Point< dim >> &points, std::vector< SymmetricTensor< 2, dim, double >> &values, const unsigned int component=0) const
 
virtual void vector_hessian_list (const std::vector< Point< dim >> &points, std::vector< std::vector< SymmetricTensor< 2, dim, double >>> &values) const
 
std::size_t memory_consumption () const
 
Number get_time () const
 
virtual void set_time (const Number new_time)
 
virtual void advance_time (const Number delta_t)
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 

Static Public Member Functions

static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Public Attributes

const unsigned int n_components
 

Static Public Attributes

static const unsigned int dimension
 

Private Attributes

const std::array< std::pair< double, double >, dim > interval_endpoints
 
const std::array< unsigned int, dim > n_subintervals
 
const Table< dim, doubledata_values
 

Detailed Description

template<int dim>
class Functions::InterpolatedUniformGridData< dim >

A scalar function that computes its values by (bi-, tri-)linear interpolation from a set of point data that are arranged on a uniformly spaced tensor product mesh. In other words, considering the three- dimensional case, let there be points \(x_0,\ldots, x_{K-1}\) that result from a uniform subdivision of the interval \([x_0,x_{K-1}]\) into \(K-1\) sub-intervals of size \(\Delta x = (x_{K-1}-x_0)/(K-1)\), and similarly \(y_0,\ldots,y_{L-1}\), \(z_1,\ldots,z_{M-1}\). Also consider data \(d_{klm}\) defined at point \((x_k,y_l,z_m)^T\), then evaluating the function at a point \(\mathbf x=(x,y,z)\) will find the box so that \(x_k\le x\le x_{k+1}, y_l\le y\le y_{l+1}, z_m\le z\le z_{m+1}\), and do a trilinear interpolation of the data on this cell. Similar operations are done in lower dimensions.

This class is most often used for either evaluating coefficients or right hand sides that are provided experimentally at a number of points inside the domain, or for comparing outputs of a solution on a finite element mesh against previously obtained data defined on a grid.

Note
If you have a problem where the points \(x_i\) are not equally spaced (e.g., they result from a computation on a graded mesh that is denser closer to one boundary), then use the InterpolatedTensorProductGridData class instead.

If a point is requested outside the box defined by the end points of the coordinate arrays, then the function is assumed to simply extend by constant values beyond the last data point in each coordinate direction. (The class does not throw an error if a point lies outside the box since it frequently happens that a point lies just outside the box by an amount on the order of numerical roundoff.)

Note
The use of this class is discussed in step-53.

Definition at line 1493 of file function_lib.h.

Member Typedef Documentation

◆ time_type

using Function< dim, double >::time_type = typename FunctionTime< typename numbers::NumberTraits<double >::real_type>::time_type
inherited

The scalar-valued real type used for representing time.

Definition at line 170 of file function.h.

Constructor & Destructor Documentation

◆ InterpolatedUniformGridData()

template<int dim>
Functions::InterpolatedUniformGridData< dim >::InterpolatedUniformGridData ( const std::array< std::pair< double, double >, dim > &  interval_endpoints,
const std::array< unsigned int, dim > &  n_subintervals,
const Table< dim, double > &  data_values 
)

Constructor

Parameters
interval_endpointsThe left and right end points of the (uniformly subdivided) intervals in each of the coordinate directions.
n_subintervalsThe number of subintervals in each coordinate direction. A value of one for a coordinate means that the interval is considered as one subinterval consisting of the entire range. A value of two means that there are two subintervals each with one half of the range, etc.
data_valuesA dim-dimensional table of data at each of the mesh points defined by the coordinate arrays above. Note that the Table class has a number of conversion constructors that allow converting other data types into a table where you specify this argument.

Definition at line 2603 of file function_lib.cc.

Member Function Documentation

◆ value()

template<int dim>
double Functions::InterpolatedUniformGridData< dim >::value ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
overridevirtual

Compute the value of the function set by bilinear interpolation of the given data set.

Parameters
pThe point at which the function is to be evaluated.
componentThe vector component. Since this function is scalar, only zero is a valid argument here.
Returns
The interpolated value at this point. If the point lies outside the set of coordinates, the function is extended by a constant.

Reimplemented from Function< dim >.

Definition at line 2627 of file function_lib.cc.

◆ gradient()

template<int dim>
Tensor< 1, dim > Functions::InterpolatedUniformGridData< dim >::gradient ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
overridevirtual

Compute the gradient of the function set by bilinear interpolation of the given data set.

Parameters
pThe point at which the function is to be evaluated.
componentThe vector component. Since this function is scalar, only zero is a valid argument here.
Returns
The gradient of the interpolated function at this point. If the point lies outside the set of coordinates, the function is extended by a constant whose gradient is then of course zero.

Reimplemented from Function< dim >.

Definition at line 2676 of file function_lib.cc.

◆ vector_value()

virtual void Function< dim, double >::vector_value ( const Point< dim > &  p,
Vector< double > &  values 
) const
virtualinherited

Return all components of a vector-valued function at a given point.

values shall have the right size beforehand, i.e. n_components.

The default implementation will call value() for each component.

Reimplemented in Functions::Monomial< dim >, FunctionParser< dim >, FunctionParser< spacedim >, Functions::CosineGradFunction< dim >, Functions::ParsedFunction< dim >, Functions::FlowFunction< dim >, Functions::FlowFunction< 2 >, FunctionDerivative< dim >, and Functions::SquareFunction< dim >.

◆ value_list()

virtual void Function< dim, double >::value_list ( const std::vector< Point< dim >> &  points,
std::vector< double > &  values,
const unsigned int  component = 0 
) const
virtualinherited

◆ vector_value_list()

virtual void Function< dim, double >::vector_value_list ( const std::vector< Point< dim >> &  points,
std::vector< Vector< double >> &  values 
) const
virtualinherited

Set values to the point values of the function at the points. It is assumed that values already has the right size, i.e. the same size as the points array, and that all elements be vectors with the same number of components as this function has.

By default, this function repeatedly calls vector_value() for each point separately, to fill the output array.

Reimplemented in Functions::CutOffFunctionCinfty< dim >, Functions::CutOffFunctionC1< dim >, Functions::CutOffFunctionW1< dim >, Functions::CutOffFunctionLinfty< dim >, Functions::SlitSingularityFunction< dim >, Functions::CosineGradFunction< dim >, Functions::CosineFunction< dim >, Functions::FlowFunction< dim >, Functions::FlowFunction< 2 >, and Functions::Q1WedgeFunction< dim >.

◆ vector_values()

virtual void Function< dim, double >::vector_values ( const std::vector< Point< dim >> &  points,
std::vector< std::vector< double >> &  values 
) const
virtualinherited

For each component of the function, fill a vector of values, one for each point.

The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.

Reimplemented in Functions::StokesCosine< dim >, Functions::PoisseuilleFlow< dim >, Functions::FlowFunction< dim >, and Functions::FlowFunction< 2 >.

◆ vector_gradient()

virtual void Function< dim, double >::vector_gradient ( const Point< dim > &  p,
std::vector< Tensor< 1, dim, double >> &  gradients 
) const
virtualinherited

Return the gradient of all components of the function at the given point.

◆ gradient_list()

virtual void Function< dim, double >::gradient_list ( const std::vector< Point< dim >> &  points,
std::vector< Tensor< 1, dim, double >> &  gradients,
const unsigned int  component = 0 
) const
virtualinherited

Set gradients to the gradients of the specified component of the function at the points. It is assumed that gradients already has the right size, i.e. the same size as the points array.

◆ vector_gradients()

virtual void Function< dim, double >::vector_gradients ( const std::vector< Point< dim >> &  points,
std::vector< std::vector< Tensor< 1, dim, double >>> &  gradients 
) const
virtualinherited

For each component of the function, fill a vector of gradient values, one for each point.

The default implementation of this function in Function calls value_list() for each component. In order to improve performance, this can be reimplemented in derived classes to speed up performance.

◆ vector_gradient_list()

virtual void Function< dim, double >::vector_gradient_list ( const std::vector< Point< dim >> &  points,
std::vector< std::vector< Tensor< 1, dim, double >>> &  gradients 
) const
virtualinherited

Set gradients to the gradients of the function at the points, for all components. It is assumed that gradients already has the right size, i.e. the same size as the points array.

The outer loop over gradients is over the points in the list, the inner loop over the different components of the function.

◆ laplacian()

virtual double Function< dim, double >::laplacian ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
virtualinherited

◆ vector_laplacian()

virtual void Function< dim, double >::vector_laplacian ( const Point< dim > &  p,
Vector< double > &  values 
) const
virtualinherited

Compute the Laplacian of all components at point p and store them in values.

◆ laplacian_list()

virtual void Function< dim, double >::laplacian_list ( const std::vector< Point< dim >> &  points,
std::vector< double > &  values,
const unsigned int  component = 0 
) const
virtualinherited

◆ vector_laplacian_list()

virtual void Function< dim, double >::vector_laplacian_list ( const std::vector< Point< dim >> &  points,
std::vector< Vector< double >> &  values 
) const
virtualinherited

Compute the Laplacians of all components at a set of points.

Reimplemented in Functions::FlowFunction< dim >, and Functions::FlowFunction< 2 >.

◆ hessian()

virtual SymmetricTensor<2, dim, double > Function< dim, double >::hessian ( const Point< dim > &  p,
const unsigned int  component = 0 
) const
virtualinherited

Compute the Hessian of a given component at point p, that is the gradient of the gradient of the function.

Reimplemented in Functions::CosineFunction< dim >, Functions::CSpline< dim >, and Functions::Spherical< dim >.

◆ vector_hessian()

virtual void Function< dim, double >::vector_hessian ( const Point< dim > &  p,
std::vector< SymmetricTensor< 2, dim, double >> &  values 
) const
virtualinherited

Compute the Hessian of all components at point p and store them in values.

◆ hessian_list()

virtual void Function< dim, double >::hessian_list ( const std::vector< Point< dim >> &  points,
std::vector< SymmetricTensor< 2, dim, double >> &  values,
const unsigned int  component = 0 
) const
virtualinherited

Compute the Hessian of one component at a set of points.

◆ vector_hessian_list()

virtual void Function< dim, double >::vector_hessian_list ( const std::vector< Point< dim >> &  points,
std::vector< std::vector< SymmetricTensor< 2, dim, double >>> &  values 
) const
virtualinherited

Compute the Hessians of all components at a set of points.

◆ memory_consumption()

std::size_t Function< dim, double >::memory_consumption ( ) const
inherited

Return an estimate for the memory consumption, in bytes, of this object. This is not exact (but will usually be close) because calculating the memory usage of trees (e.g., std::map) is difficult.

◆ get_time()

template<typename Number = double>
Number FunctionTime< Number >::get_time ( ) const
inherited

Return the value of the time variable.

◆ set_time()

template<typename Number = double>
virtual void FunctionTime< Number >::set_time ( const Number  new_time)
virtualinherited

Set the time to new_time, overwriting the old value.

◆ advance_time()

template<typename Number = double>
virtual void FunctionTime< Number >::advance_time ( const Number  delta_t)
virtualinherited

Advance the time by the given time step delta_t.

◆ subscribe()

void Subscriptor::subscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Subscribes a user of the object by storing the pointer validity. The subscriber may be identified by text supplied as identifier.

Definition at line 136 of file subscriptor.cc.

◆ unsubscribe()

void Subscriptor::unsubscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Unsubscribes a user from the object.

Note
The identifier and the validity pointer must be the same as the one supplied to subscribe().

Definition at line 156 of file subscriptor.cc.

◆ n_subscriptions()

unsigned int Subscriptor::n_subscriptions ( ) const
inlineinherited

Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.

Definition at line 300 of file subscriptor.h.

◆ list_subscribers() [1/2]

template<typename StreamType >
void Subscriptor::list_subscribers ( StreamType &  stream) const
inlineinherited

List the subscribers to the input stream.

Definition at line 317 of file subscriptor.h.

◆ list_subscribers() [2/2]

void Subscriptor::list_subscribers ( ) const
inherited

List the subscribers to deallog.

Definition at line 204 of file subscriptor.cc.

◆ serialize()

template<class Archive >
void Subscriptor::serialize ( Archive &  ar,
const unsigned int  version 
)
inlineinherited

Read or write the data of this object to or from a stream for the purpose of serialization.

This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.

Definition at line 309 of file subscriptor.h.

Member Data Documentation

◆ interval_endpoints

template<int dim>
const std::array<std::pair<double, double>, dim> Functions::InterpolatedUniformGridData< dim >::interval_endpoints
private

The set of interval endpoints in each of the coordinate directions.

Definition at line 1547 of file function_lib.h.

◆ n_subintervals

template<int dim>
const std::array<unsigned int, dim> Functions::InterpolatedUniformGridData< dim >::n_subintervals
private

The number of subintervals in each of the coordinate directions.

Definition at line 1552 of file function_lib.h.

◆ data_values

template<int dim>
const Table<dim, double> Functions::InterpolatedUniformGridData< dim >::data_values
private

The data that is to be interpolated.

Definition at line 1557 of file function_lib.h.

◆ dimension

const unsigned int Function< dim, double >::dimension
staticinherited

Export the value of the template parameter as a static member constant. Sometimes useful for some expression template programming.

Definition at line 159 of file function.h.

◆ n_components

const unsigned int Function< dim, double >::n_components
inherited

Number of vector components.

Definition at line 164 of file function.h.


The documentation for this class was generated from the following files: