deal.II version GIT relicensing-1834-gcb0191c2bf 2024-09-10 15:10:00+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Public Types | Public Member Functions | Static Public Member Functions | Protected Attributes | Private Types | Private Member Functions | Private Attributes | Static Private Attributes | Friends | List of all members
BlockVectorBase< VectorType > Class Template Referenceabstract

#include <deal.II/lac/block_vector_base.h>

Inheritance diagram for BlockVectorBase< VectorType >:
Inheritance graph
[legend]

Public Types

using BlockType = VectorType
 
using value_type = typename BlockType::value_type
 
using pointer = value_type *
 
using const_pointer = const value_type *
 
using iterator = ::internal::BlockVectorIterators::Iterator< BlockVectorBase, false >
 
using const_iterator = ::internal::BlockVectorIterators::Iterator< BlockVectorBase, true >
 
using reference = typename BlockType::reference
 
using const_reference = typename BlockType::const_reference
 
using size_type = types::global_dof_index
 
using real_type = typename BlockType::real_type
 

Public Member Functions

 BlockVectorBase ()=default
 
 BlockVectorBase (const BlockVectorBase &)=default
 
 BlockVectorBase (BlockVectorBase &&) noexcept=default
 
void collect_sizes ()
 
void compress (VectorOperation::values operation)
 
BlockTypeblock (const unsigned int i)
 
const BlockTypeblock (const unsigned int i) const
 
const BlockIndicesget_block_indices () const
 
unsigned int n_blocks () const
 
virtual size_type size () const override
 
std::size_t locally_owned_size () const
 
IndexSet locally_owned_elements () const
 
iterator begin ()
 
const_iterator begin () const
 
iterator end ()
 
const_iterator end () const
 
value_type operator() (const size_type i) const
 
reference operator() (const size_type i)
 
value_type operator[] (const size_type i) const
 
reference operator[] (const size_type i)
 
template<typename OtherNumber >
void extract_subvector_to (const std::vector< size_type > &indices, std::vector< OtherNumber > &values) const
 
virtual void extract_subvector_to (const ArrayView< const types::global_dof_index > &indices, ArrayView< value_type > &entries) const override
 
template<typename ForwardIterator , typename OutputIterator >
void extract_subvector_to (ForwardIterator indices_begin, const ForwardIterator indices_end, OutputIterator values_begin) const
 
BlockVectorBaseoperator= (const value_type s)
 
BlockVectorBaseoperator= (const BlockVectorBase &V)
 
BlockVectorBaseoperator= (BlockVectorBase &&)=default
 
template<typename VectorType2 >
BlockVectorBaseoperator= (const BlockVectorBase< VectorType2 > &V)
 
BlockVectorBaseoperator= (const VectorType &v)
 
template<typename VectorType2 >
bool operator== (const BlockVectorBase< VectorType2 > &v) const
 
value_type operator* (const BlockVectorBase &V) const
 
real_type norm_sqr () const
 
value_type mean_value () const
 
real_type l1_norm () const
 
real_type l2_norm () const
 
real_type linfty_norm () const
 
value_type add_and_dot (const value_type a, const BlockVectorBase &V, const BlockVectorBase &W)
 
bool in_local_range (const size_type global_index) const
 
bool all_zero () const
 
bool is_non_negative () const
 
BlockVectorBaseoperator+= (const BlockVectorBase &V)
 
BlockVectorBaseoperator-= (const BlockVectorBase &V)
 
template<typename Number >
void add (const std::vector< size_type > &indices, const std::vector< Number > &values)
 
template<typename Number >
void add (const std::vector< size_type > &indices, const Vector< Number > &values)
 
template<typename Number >
void add (const size_type n_elements, const size_type *indices, const Number *values)
 
void add (const value_type s)
 
void add (const value_type a, const BlockVectorBase &V)
 
void add (const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W)
 
void sadd (const value_type s, const BlockVectorBase &V)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W, const value_type c, const BlockVectorBase &X)
 
BlockVectorBaseoperator*= (const value_type factor)
 
BlockVectorBaseoperator/= (const value_type factor)
 
template<class BlockVector2 >
void scale (const BlockVector2 &v)
 
template<class BlockVector2 >
void equ (const value_type a, const BlockVector2 &V)
 
void update_ghost_values () const
 
MPI_Comm get_mpi_communicator () const
 
std::size_t memory_consumption () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 
virtual void extract_subvector_to (const ArrayView< const types::global_dof_index > &indices, ArrayView< VectorType::value_type > &elements) const=0
 
Subscriptor functionality

Classes derived from Subscriptor provide a facility to subscribe to this object. This is mostly used by the SmartPointer class.

void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 

Static Public Member Functions

static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Protected Attributes

std::vector< VectorType > components
 
BlockIndices block_indices
 

Private Types

using map_value_type = decltype(counter_map)::value_type
 
using map_iterator = decltype(counter_map)::iterator
 

Private Member Functions

void check_no_subscribers () const noexcept
 

Private Attributes

std::atomic< unsigned intcounter
 
std::map< std::string, unsigned intcounter_map
 
std::vector< std::atomic< bool > * > validity_pointers
 
const std::type_info * object_info
 

Static Private Attributes

static std::mutex mutex
 

Friends

template<typename N , bool C>
class ::internal::BlockVectorIterators::Iterator
 
template<typename >
class BlockVectorBase
 

Detailed Description

template<typename VectorType>
class BlockVectorBase< VectorType >

A vector composed of several blocks each representing a vector of its own.

The BlockVector is a collection of vectors of a given type (e.g., deal.II Vector objects, PETScWrappers::MPI::Vector objects, etc.). Each of the vectors inside can have a different size.

The functionality of BlockVector includes everything a Vector can do, plus the access to a single Vector inside the BlockVector by block(i). It also has a complete random access iterator, just as the other Vector classes or the standard C++ library template std::vector. Therefore, all algorithms working on iterators also work with objects of this class.

While this base class implements most of the functionality by dispatching calls to its member functions to the respective functions on each of the individual blocks, this class does not actually allocate some memory or change the size of vectors. For this, the constructors, assignment operators and reinit() functions of derived classes are responsible. This class only handles the common part that is independent of the actual vector type the block vector is built on.

Accessing individual blocks, and resizing vectors

Apart from using this object as a whole, you can use each block separately as a vector, using the block() function. There is a single caveat: if you have changed the size of one or several blocks, you must call the function collect_sizes() of the block vector to update its internal structures.

Attention
Warning: If you change the sizes of single blocks without calling collect_sizes(), results may be unpredictable. The debug version does not check consistency here for performance reasons!
See also
Block (linear algebra)

Definition at line 441 of file block_vector_base.h.

Member Typedef Documentation

◆ BlockType

template<typename VectorType >
using BlockVectorBase< VectorType >::BlockType = VectorType

Typedef the type of the underlying vector.

Definition at line 448 of file block_vector_base.h.

◆ value_type

template<typename VectorType >
using BlockVectorBase< VectorType >::value_type = typename BlockType::value_type

Definition at line 460 of file block_vector_base.h.

◆ pointer

template<typename VectorType >
using BlockVectorBase< VectorType >::pointer = value_type *

Definition at line 461 of file block_vector_base.h.

◆ const_pointer

template<typename VectorType >
using BlockVectorBase< VectorType >::const_pointer = const value_type *

Definition at line 462 of file block_vector_base.h.

◆ iterator

template<typename VectorType >
using BlockVectorBase< VectorType >::iterator = ::internal::BlockVectorIterators::Iterator<BlockVectorBase, false>

Definition at line 463 of file block_vector_base.h.

◆ const_iterator

template<typename VectorType >
using BlockVectorBase< VectorType >::const_iterator = ::internal::BlockVectorIterators::Iterator<BlockVectorBase, true>

Definition at line 465 of file block_vector_base.h.

◆ reference

template<typename VectorType >
using BlockVectorBase< VectorType >::reference = typename BlockType::reference

Definition at line 467 of file block_vector_base.h.

◆ const_reference

template<typename VectorType >
using BlockVectorBase< VectorType >::const_reference = typename BlockType::const_reference

Definition at line 468 of file block_vector_base.h.

◆ size_type

template<typename VectorType >
using BlockVectorBase< VectorType >::size_type = types::global_dof_index

Definition at line 469 of file block_vector_base.h.

◆ real_type

template<typename VectorType >
using BlockVectorBase< VectorType >::real_type = typename BlockType::real_type

Declare a type that has holds real-valued numbers with the same precision as the template argument to this class. If the template argument of this class is a real data type, then real_type equals the template argument. If the template argument is a std::complex type then real_type equals the type underlying the complex numbers.

This alias is used to represent the return type of norms.

Definition at line 480 of file block_vector_base.h.

◆ map_value_type

using Subscriptor::map_value_type = decltype(counter_map)::value_type
privateinherited

The data type used in counter_map.

Definition at line 229 of file subscriptor.h.

◆ map_iterator

using Subscriptor::map_iterator = decltype(counter_map)::iterator
privateinherited

The iterator type used in counter_map.

Definition at line 234 of file subscriptor.h.

Constructor & Destructor Documentation

◆ BlockVectorBase() [1/3]

template<typename VectorType >
BlockVectorBase< VectorType >::BlockVectorBase ( )
default

Default constructor.

◆ BlockVectorBase() [2/3]

template<typename VectorType >
BlockVectorBase< VectorType >::BlockVectorBase ( const BlockVectorBase< VectorType > &  )
default

Copy constructor.

◆ BlockVectorBase() [3/3]

template<typename VectorType >
BlockVectorBase< VectorType >::BlockVectorBase ( BlockVectorBase< VectorType > &&  )
defaultnoexcept

Move constructor. Each block of the argument vector is moved into the current object if the underlying VectorType is move-constructible, otherwise they are copied.

Member Function Documentation

◆ collect_sizes()

template<typename VectorType >
void BlockVectorBase< VectorType >::collect_sizes ( )

Update internal structures after resizing vectors. Whenever you reinited a block of a block vector, the internal data structures are corrupted. Therefore, you should call this function after all blocks got their new size.

◆ compress()

template<typename VectorType >
void BlockVectorBase< VectorType >::compress ( VectorOperation::values  operation)

Call the compress() function on all the subblocks of the vector.

This functionality only needs to be called if using MPI based vectors and exists in other objects for compatibility.

See Compressing distributed objects for more information.

◆ block() [1/2]

template<typename VectorType >
BlockType & BlockVectorBase< VectorType >::block ( const unsigned int  i)

Access to a single block.

◆ block() [2/2]

template<typename VectorType >
const BlockType & BlockVectorBase< VectorType >::block ( const unsigned int  i) const

Read-only access to a single block.

◆ get_block_indices()

template<typename VectorType >
const BlockIndices & BlockVectorBase< VectorType >::get_block_indices ( ) const

Return a reference on the object that describes the mapping between block and global indices. The use of this function is highly deprecated and it should vanish in one of the next versions

◆ n_blocks()

template<typename VectorType >
unsigned int BlockVectorBase< VectorType >::n_blocks ( ) const

Number of blocks.

◆ size()

template<typename VectorType >
virtual size_type BlockVectorBase< VectorType >::size ( ) const
overridevirtual

Return dimension of the vector. This is the sum of the dimensions of all components.

Implements ReadVector< VectorType::value_type >.

Reimplemented in LinearAlgebra::distributed::BlockVector< Number >.

◆ locally_owned_size()

template<typename VectorType >
std::size_t BlockVectorBase< VectorType >::locally_owned_size ( ) const

Return local dimension of the vector. This is the sum of the local dimensions (i.e., values stored on the current processor) of all components.

◆ locally_owned_elements()

template<typename VectorType >
IndexSet BlockVectorBase< VectorType >::locally_owned_elements ( ) const

Return an index set that describes which elements of this vector are owned by the current processor. Note that this index set does not include elements this vector may store locally as ghost elements but that are in fact owned by another processor. As a consequence, the index sets returned on different processors if this is a distributed vector will form disjoint sets that add up to the complete index set. Obviously, if a vector is created on only one processor, then the result would satisfy

vec.locally_owned_elements() == complete_index_set (vec.size())
IndexSet complete_index_set(const IndexSet::size_type N)
Definition index_set.h:1204

For block vectors, this function returns the union of the locally owned elements of the individual blocks, shifted by their respective index offsets.

◆ begin() [1/2]

template<typename VectorType >
iterator BlockVectorBase< VectorType >::begin ( )

Return an iterator pointing to the first element.

◆ begin() [2/2]

template<typename VectorType >
const_iterator BlockVectorBase< VectorType >::begin ( ) const

Return an iterator pointing to the first element of a constant block vector.

◆ end() [1/2]

template<typename VectorType >
iterator BlockVectorBase< VectorType >::end ( )

Return an iterator pointing to the element past the end.

◆ end() [2/2]

template<typename VectorType >
const_iterator BlockVectorBase< VectorType >::end ( ) const

Return an iterator pointing to the element past the end of a constant block vector.

◆ operator()() [1/2]

template<typename VectorType >
value_type BlockVectorBase< VectorType >::operator() ( const size_type  i) const

Access components, returns U(i).

◆ operator()() [2/2]

template<typename VectorType >
reference BlockVectorBase< VectorType >::operator() ( const size_type  i)

Access components, returns U(i) as a writeable reference.

◆ operator[]() [1/2]

template<typename VectorType >
value_type BlockVectorBase< VectorType >::operator[] ( const size_type  i) const

Access components, returns U(i).

Exactly the same as operator().

◆ operator[]() [2/2]

template<typename VectorType >
reference BlockVectorBase< VectorType >::operator[] ( const size_type  i)

Access components, returns U(i) as a writeable reference.

Exactly the same as operator().

◆ extract_subvector_to() [1/4]

template<typename VectorType >
template<typename OtherNumber >
void BlockVectorBase< VectorType >::extract_subvector_to ( const std::vector< size_type > &  indices,
std::vector< OtherNumber > &  values 
) const

Instead of getting individual elements of a vector via operator(), this function allows getting a whole set of elements at once. The indices of the elements to be read are stated in the first argument, the corresponding values are returned in the second.

If the current vector is called v, then this function is the equivalent to the code

for (unsigned int i=0; i<indices.size(); ++i)
values[i] = v[indices[i]];
Precondition
The sizes of the indices and values arrays must be identical.

◆ extract_subvector_to() [2/4]

template<typename VectorType >
virtual void BlockVectorBase< VectorType >::extract_subvector_to ( const ArrayView< const types::global_dof_index > &  indices,
ArrayView< value_type > &  entries 
) const
overridevirtual

◆ extract_subvector_to() [3/4]

template<typename VectorType >
template<typename ForwardIterator , typename OutputIterator >
void BlockVectorBase< VectorType >::extract_subvector_to ( ForwardIterator  indices_begin,
const ForwardIterator  indices_end,
OutputIterator  values_begin 
) const

Instead of getting individual elements of a vector via operator(), this function allows getting a whole set of elements at once. In contrast to the previous function, this function obtains the indices of the elements by dereferencing all elements of the iterator range provided by the first two arguments, and puts the vector values into memory locations obtained by dereferencing a range of iterators starting at the location pointed to by the third argument.

If the current vector is called v, then this function is the equivalent to the code

ForwardIterator indices_p = indices_begin;
OutputIterator values_p = values_begin;
while (indices_p != indices_end)
{
*values_p = v[*indices_p];
++indices_p;
++values_p;
}
Precondition
It must be possible to write into as many memory locations starting at values_begin as there are iterators between indices_begin and indices_end.

◆ operator=() [1/5]

template<typename VectorType >
BlockVectorBase & BlockVectorBase< VectorType >::operator= ( const value_type  s)

Copy operator: fill all components of the vector with the given scalar value.

◆ operator=() [2/5]

template<typename VectorType >
BlockVectorBase & BlockVectorBase< VectorType >::operator= ( const BlockVectorBase< VectorType > &  V)

Copy operator for arguments of the same type.

◆ operator=() [3/5]

template<typename VectorType >
BlockVectorBase & BlockVectorBase< VectorType >::operator= ( BlockVectorBase< VectorType > &&  )
default

Move assignment operator. Move each block of the given argument vector into the current object if VectorType is move-constructible, otherwise copy them.

◆ operator=() [4/5]

template<typename VectorType >
template<typename VectorType2 >
BlockVectorBase & BlockVectorBase< VectorType >::operator= ( const BlockVectorBase< VectorType2 > &  V)

Copy operator for template arguments of different types.

◆ operator=() [5/5]

template<typename VectorType >
BlockVectorBase & BlockVectorBase< VectorType >::operator= ( const VectorType &  v)

Copy operator from non-block vectors to block vectors.

◆ operator==()

template<typename VectorType >
template<typename VectorType2 >
bool BlockVectorBase< VectorType >::operator== ( const BlockVectorBase< VectorType2 > &  v) const

Check for equality of two block vector types. This operation is only allowed if the two vectors already have the same block structure.

◆ operator*()

template<typename VectorType >
value_type BlockVectorBase< VectorType >::operator* ( const BlockVectorBase< VectorType > &  V) const

\(U = U * V\): scalar product.

◆ norm_sqr()

template<typename VectorType >
real_type BlockVectorBase< VectorType >::norm_sqr ( ) const

Return the square of the \(l_2\)-norm.

◆ mean_value()

template<typename VectorType >
value_type BlockVectorBase< VectorType >::mean_value ( ) const

Return the mean value of the elements of this vector.

◆ l1_norm()

template<typename VectorType >
real_type BlockVectorBase< VectorType >::l1_norm ( ) const

Return the \(l_1\)-norm of the vector, i.e. the sum of the absolute values.

◆ l2_norm()

template<typename VectorType >
real_type BlockVectorBase< VectorType >::l2_norm ( ) const

Return the \(l_2\)-norm of the vector, i.e. the square root of the sum of the squares of the elements.

◆ linfty_norm()

template<typename VectorType >
real_type BlockVectorBase< VectorType >::linfty_norm ( ) const

Return the maximum absolute value of the elements of this vector, which is the \(l_\infty\)-norm of a vector.

◆ add_and_dot()

template<typename VectorType >
value_type BlockVectorBase< VectorType >::add_and_dot ( const value_type  a,
const BlockVectorBase< VectorType > &  V,
const BlockVectorBase< VectorType > &  W 
)

Performs a combined operation of a vector addition and a subsequent inner product, returning the value of the inner product. In other words, the result of this function is the same as if the user called

this->add(a, V);
return_value = *this * W;
void add(const std::vector< size_type > &indices, const std::vector< Number > &values)

The reason this function exists is that this operation involves less memory transfer than calling the two functions separately on deal.II's vector classes (Vector<Number> and LinearAlgebra::distributed::Vector<double>). This method only needs to load three vectors, this, V, W, whereas calling separate methods means to load the calling vector this twice. Since most vector operations are memory transfer limited, this reduces the time by 25% (or 50% if W equals this).

For complex-valued vectors, the scalar product in the second step is implemented as \(\left<v,w\right>=\sum_i v_i \bar{w_i}\).

◆ in_local_range()

template<typename VectorType >
bool BlockVectorBase< VectorType >::in_local_range ( const size_type  global_index) const

Return true if the given global index is in the local range of this processor. Asks the corresponding block.

◆ all_zero()

template<typename VectorType >
bool BlockVectorBase< VectorType >::all_zero ( ) const

Return whether the vector contains only elements with value zero. This function is mainly for internal consistency check and should seldom be used when not in debug mode since it uses quite some time.

◆ is_non_negative()

template<typename VectorType >
bool BlockVectorBase< VectorType >::is_non_negative ( ) const

Return true if the vector has no negative entries, i.e. all entries are zero or positive. This function is used, for example, to check whether refinement indicators are really all positive (or zero).

◆ operator+=()

template<typename VectorType >
BlockVectorBase & BlockVectorBase< VectorType >::operator+= ( const BlockVectorBase< VectorType > &  V)

Addition operator. Fast equivalent to U.add(1, V).

◆ operator-=()

template<typename VectorType >
BlockVectorBase & BlockVectorBase< VectorType >::operator-= ( const BlockVectorBase< VectorType > &  V)

Subtraction operator. Fast equivalent to U.add(-1, V).

◆ add() [1/6]

template<typename VectorType >
template<typename Number >
void BlockVectorBase< VectorType >::add ( const std::vector< size_type > &  indices,
const std::vector< Number > &  values 
)

A collective add operation: This function adds a whole set of values stored in values to the vector components specified by indices.

◆ add() [2/6]

template<typename VectorType >
template<typename Number >
void BlockVectorBase< VectorType >::add ( const std::vector< size_type > &  indices,
const Vector< Number > &  values 
)

This is a second collective add operation. As a difference, this function takes a deal.II vector of values.

◆ add() [3/6]

template<typename VectorType >
template<typename Number >
void BlockVectorBase< VectorType >::add ( const size_type  n_elements,
const size_type indices,
const Number *  values 
)

Take an address where n_elements are stored contiguously and add them into the vector. Handles all cases which are not covered by the other two add() functions above.

◆ add() [4/6]

template<typename VectorType >
void BlockVectorBase< VectorType >::add ( const value_type  s)

\(U(0-DIM)+=s\). Addition of s to all components. Note that s is a scalar and not a vector.

◆ add() [5/6]

template<typename VectorType >
void BlockVectorBase< VectorType >::add ( const value_type  a,
const BlockVectorBase< VectorType > &  V 
)

U+=a*V. Simple addition of a scaled vector.

◆ add() [6/6]

template<typename VectorType >
void BlockVectorBase< VectorType >::add ( const value_type  a,
const BlockVectorBase< VectorType > &  V,
const value_type  b,
const BlockVectorBase< VectorType > &  W 
)

U+=a*V+b*W. Multiple addition of scaled vectors.

◆ sadd() [1/4]

template<typename VectorType >
void BlockVectorBase< VectorType >::sadd ( const value_type  s,
const BlockVectorBase< VectorType > &  V 
)

U=s*U+V. Scaling and simple vector addition.

◆ sadd() [2/4]

template<typename VectorType >
void BlockVectorBase< VectorType >::sadd ( const value_type  s,
const value_type  a,
const BlockVectorBase< VectorType > &  V 
)

U=s*U+a*V. Scaling and simple addition.

◆ sadd() [3/4]

template<typename VectorType >
void BlockVectorBase< VectorType >::sadd ( const value_type  s,
const value_type  a,
const BlockVectorBase< VectorType > &  V,
const value_type  b,
const BlockVectorBase< VectorType > &  W 
)

U=s*U+a*V+b*W. Scaling and multiple addition.

◆ sadd() [4/4]

template<typename VectorType >
void BlockVectorBase< VectorType >::sadd ( const value_type  s,
const value_type  a,
const BlockVectorBase< VectorType > &  V,
const value_type  b,
const BlockVectorBase< VectorType > &  W,
const value_type  c,
const BlockVectorBase< VectorType > &  X 
)

U=s*U+a*V+b*W+c*X. Scaling and multiple addition.

◆ operator*=()

template<typename VectorType >
BlockVectorBase & BlockVectorBase< VectorType >::operator*= ( const value_type  factor)

Scale each element of the vector by a constant value.

◆ operator/=()

template<typename VectorType >
BlockVectorBase & BlockVectorBase< VectorType >::operator/= ( const value_type  factor)

Scale each element of the vector by the inverse of the given value.

◆ scale()

template<typename VectorType >
template<class BlockVector2 >
void BlockVectorBase< VectorType >::scale ( const BlockVector2 &  v)

Multiply each element of this vector by the corresponding element of v.

◆ equ()

template<typename VectorType >
template<class BlockVector2 >
void BlockVectorBase< VectorType >::equ ( const value_type  a,
const BlockVector2 &  V 
)

U=a*V. Assignment.

◆ update_ghost_values()

template<typename VectorType >
void BlockVectorBase< VectorType >::update_ghost_values ( ) const

Update the ghost values by calling update_ghost_values for each block.

◆ get_mpi_communicator()

template<typename VectorType >
MPI_Comm BlockVectorBase< VectorType >::get_mpi_communicator ( ) const

This function returns the MPI communicator of the vector in the underlying blocks or, if the vector has not been initialized, the empty MPI_COMM_SELF.

◆ memory_consumption()

template<typename VectorType >
std::size_t BlockVectorBase< VectorType >::memory_consumption ( ) const

Determine an estimate for the memory consumption (in bytes) of this object.

◆ subscribe()

void Subscriptor::subscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Subscribes a user of the object by storing the pointer validity. The subscriber may be identified by text supplied as identifier.

Definition at line 130 of file subscriptor.cc.

◆ unsubscribe()

void Subscriptor::unsubscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Unsubscribes a user from the object.

Note
The identifier and the validity pointer must be the same as the one supplied to subscribe().

Definition at line 150 of file subscriptor.cc.

◆ n_subscriptions()

unsigned int Subscriptor::n_subscriptions ( ) const
inlineinherited

Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.

Definition at line 300 of file subscriptor.h.

◆ list_subscribers() [1/2]

template<typename StreamType >
void Subscriptor::list_subscribers ( StreamType &  stream) const
inlineinherited

List the subscribers to the input stream.

Definition at line 317 of file subscriptor.h.

◆ list_subscribers() [2/2]

void Subscriptor::list_subscribers ( ) const
inherited

List the subscribers to deallog.

Definition at line 198 of file subscriptor.cc.

◆ serialize()

template<class Archive >
void Subscriptor::serialize ( Archive &  ar,
const unsigned int  version 
)
inlineinherited

Read or write the data of this object to or from a stream for the purpose of serialization using the BOOST serialization library.

This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.

Definition at line 309 of file subscriptor.h.

◆ check_no_subscribers()

void Subscriptor::check_no_subscribers ( ) const
privatenoexceptinherited

Check that there are no objects subscribing to this object. If this check passes then it is safe to destroy the current object. It this check fails then this function will either abort or print an error message to deallog (by using the AssertNothrow mechanism), but will not throw an exception.

Note
Since this function is just a consistency check it does nothing in release mode.
If this function is called when there is an uncaught exception then, rather than aborting, this function prints an error message to the standard error stream and returns.

Definition at line 52 of file subscriptor.cc.

◆ extract_subvector_to() [4/4]

virtual void ReadVector< VectorType::value_type >::extract_subvector_to ( const ArrayView< const types::global_dof_index > &  indices,
ArrayView< VectorType::value_type > &  elements 
) const
pure virtualinherited

Extract a subset of the vector specified by indices into the output array elements.

Friends And Related Symbol Documentation

◆ ::internal::BlockVectorIterators::Iterator

template<typename VectorType >
template<typename N , bool C>
friend class ::internal::BlockVectorIterators::Iterator
friend

Definition at line 981 of file block_vector_base.h.

◆ BlockVectorBase

template<typename VectorType >
template<typename >
friend class BlockVectorBase
friend

Definition at line 984 of file block_vector_base.h.

Member Data Documentation

◆ components

template<typename VectorType >
std::vector<VectorType> BlockVectorBase< VectorType >::components
protected

Pointer to the array of components.

Definition at line 971 of file block_vector_base.h.

◆ block_indices

template<typename VectorType >
BlockIndices BlockVectorBase< VectorType >::block_indices
protected

Object managing the transformation between global indices and indices within the different blocks.

Definition at line 977 of file block_vector_base.h.

◆ counter

std::atomic<unsigned int> Subscriptor::counter
mutableprivateinherited

Store the number of objects which subscribed to this object. Initially, this number is zero, and upon destruction it shall be zero again (i.e. all objects which subscribed should have unsubscribed again).

The creator (and owner) of an object is counted in the map below if HE manages to supply identification.

We use the mutable keyword in order to allow subscription to constant objects also.

This counter may be read from and written to concurrently in multithreaded code: hence we use the std::atomic class template.

Definition at line 218 of file subscriptor.h.

◆ counter_map

std::map<std::string, unsigned int> Subscriptor::counter_map
mutableprivateinherited

In this map, we count subscriptions for each different identification string supplied to subscribe().

Definition at line 224 of file subscriptor.h.

◆ validity_pointers

std::vector<std::atomic<bool> *> Subscriptor::validity_pointers
mutableprivateinherited

In this vector, we store pointers to the validity bool in the SmartPointer objects that subscribe to this class.

Definition at line 240 of file subscriptor.h.

◆ object_info

const std::type_info* Subscriptor::object_info
mutableprivateinherited

Pointer to the typeinfo object of this object, from which we can later deduce the class name. Since this information on the derived class is neither available in the destructor, nor in the constructor, we obtain it in between and store it here.

Definition at line 248 of file subscriptor.h.

◆ mutex

std::mutex Subscriptor::mutex
staticprivateinherited

A mutex used to ensure data consistency when accessing the mutable members of this class. This lock is used in the subscribe() and unsubscribe() functions, as well as in list_subscribers().

Definition at line 271 of file subscriptor.h.


The documentation for this class was generated from the following file: