Reference documentation for deal.II version Git d435e92be9 2020-09-23 09:04:26 -0400
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Public Types | Public Member Functions | Static Public Member Functions | Protected Attributes | Related Functions | List of all members
BlockVector< Number > Class Template Reference

#include <deal.II/lac/block_vector.h>

Inheritance diagram for BlockVector< Number >:
[legend]

Public Types

using BaseClass = BlockVectorBase< Vector< Number > >
 
using BlockType = typename BaseClass::BlockType
 
using value_type = typename BaseClass::value_type
 
using real_type = typename BaseClass::real_type
 
using pointer = typename BaseClass::pointer
 
using const_pointer = typename BaseClass::const_pointer
 
using reference = typename BaseClass::reference
 
using const_reference = typename BaseClass::const_reference
 
using size_type = typename BaseClass::size_type
 
using iterator = typename BaseClass::iterator
 
using const_iterator = typename BaseClass::const_iterator
 

Public Member Functions

 BlockVector (const unsigned int n_blocks=0, const size_type block_size=0)
 
 BlockVector (const BlockVector< Number > &V)
 
 BlockVector (BlockVector< Number > &&) noexcept=default
 
template<typename OtherNumber >
 BlockVector (const BlockVector< OtherNumber > &v)
 
 BlockVector (const TrilinosWrappers::MPI::BlockVector &v)
 
 BlockVector (const std::vector< size_type > &block_sizes)
 
 BlockVector (const BlockIndices &block_indices)
 
template<typename InputIterator >
 BlockVector (const std::vector< size_type > &block_sizes, const InputIterator first, const InputIterator end)
 
 ~BlockVector () override=default
 
void compress (::VectorOperation::values operation=::VectorOperation::unknown)
 
bool has_ghost_elements () const
 
BlockVectoroperator= (const value_type s)
 
BlockVector< Number > & operator= (const BlockVector< Number > &v)
 
BlockVector< Number > & operator= (BlockVector< Number > &&)=default
 
template<class Number2 >
BlockVector< Number > & operator= (const BlockVector< Number2 > &V)
 
BlockVector< Number > & operator= (const Vector< Number > &V)
 
BlockVector< Number > & operator= (const TrilinosWrappers::MPI::BlockVector &V)
 
void reinit (const unsigned int n_blocks, const size_type block_size=0, const bool omit_zeroing_entries=false)
 
void reinit (const std::vector< size_type > &block_sizes, const bool omit_zeroing_entries=false)
 
void reinit (const BlockIndices &block_indices, const bool omit_zeroing_entries=false)
 
template<typename Number2 >
void reinit (const BlockVector< Number2 > &V, const bool omit_zeroing_entries=false)
 
template<class BlockVector2 >
void scale (const BlockVector2 &v)
 
void swap (BlockVector< Number > &v)
 
void print (std::ostream &out, const unsigned int precision=3, const bool scientific=true, const bool across=true) const
 
void block_write (std::ostream &out) const
 
void block_read (std::istream &in)
 
void collect_sizes ()
 
BlockTypeblock (const unsigned int i)
 
const BlockTypeblock (const unsigned int i) const
 
const BlockIndicesget_block_indices () const
 
unsigned int n_blocks () const
 
std::size_t size () const
 
IndexSet locally_owned_elements () const
 
iterator begin ()
 
const_iterator begin () const
 
iterator end ()
 
const_iterator end () const
 
value_type operator() (const size_type i) const
 
reference operator() (const size_type i)
 
value_type operator[] (const size_type i) const
 
reference operator[] (const size_type i)
 
void extract_subvector_to (const std::vector< size_type > &indices, std::vector< OtherNumber > &values) const
 
void extract_subvector_to (ForwardIterator indices_begin, const ForwardIterator indices_end, OutputIterator values_begin) const
 
bool operator== (const BlockVectorBase< VectorType2 > &v) const
 
value_type operator* (const BlockVectorBase &V) const
 
real_type norm_sqr () const
 
value_type mean_value () const
 
real_type l1_norm () const
 
real_type l2_norm () const
 
real_type linfty_norm () const
 
value_type add_and_dot (const value_type a, const BlockVectorBase &V, const BlockVectorBase &W)
 
bool in_local_range (const size_type global_index) const
 
bool all_zero () const
 
bool is_non_negative () const
 
BlockVectorBaseoperator+= (const BlockVectorBase &V)
 
BlockVectorBaseoperator-= (const BlockVectorBase &V)
 
void add (const std::vector< size_type > &indices, const std::vector< Number > &values)
 
void add (const std::vector< size_type > &indices, const Vector< Number > &values)
 
void add (const size_type n_elements, const size_type *indices, const Number *values)
 
void add (const value_type s)
 
void add (const value_type a, const BlockVectorBase &V)
 
void add (const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W)
 
void sadd (const value_type s, const BlockVectorBase &V)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W)
 
void sadd (const value_type s, const value_type a, const BlockVectorBase &V, const value_type b, const BlockVectorBase &W, const value_type c, const BlockVectorBase &X)
 
BlockVectorBaseoperator*= (const value_type factor)
 
BlockVectorBaseoperator/= (const value_type factor)
 
void equ (const value_type a, const BlockVector2 &V)
 
void update_ghost_values () const
 
std::size_t memory_consumption () const
 
void subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
void unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const
 
unsigned int n_subscriptions () const
 
template<typename StreamType >
void list_subscribers (StreamType &stream) const
 
void list_subscribers () const
 
template<class Archive >
void serialize (Archive &ar, const unsigned int version)
 

Static Public Member Functions

static ::ExceptionBaseExcIteratorRangeDoesNotMatchVectorSize ()
 
static ::ExceptionBaseExcInUse (int arg1, std::string arg2, std::string arg3)
 
static ::ExceptionBaseExcNoSubscriber (std::string arg1, std::string arg2)
 

Protected Attributes

std::vector< Vector< Number > > components
 
BlockIndices block_indices
 

Related Functions

(Note that these are not member functions.)

template<typename Number >
void swap (BlockVector< Number > &u, BlockVector< Number > &v)
 
template<typename Number >
void swap (LinearAlgebra::distributed::BlockVector< Number > &u, LinearAlgebra::distributed::BlockVector< Number > &v)
 

Detailed Description

template<typename Number>
class BlockVector< Number >

An implementation of block vectors based on deal.II vectors. While the base class provides for most of the interface, this class handles the actual allocation of vectors and provides functions that are specific to the underlying vector type.

Note
Instantiations for this template are provided for <float> and <double>; others can be generated in application programs (see the section on Template instantiations in the manual).
See also
Block (linear algebra)

Definition at line 70 of file block_vector.h.

Member Typedef Documentation

◆ BaseClass

template<typename Number>
using BlockVector< Number >::BaseClass = BlockVectorBase<Vector<Number> >

Typedef the base class for simpler access to its own alias.

Definition at line 76 of file block_vector.h.

◆ BlockType

template<typename Number>
using BlockVector< Number >::BlockType = typename BaseClass::BlockType

Typedef the type of the underlying vector.

Definition at line 81 of file block_vector.h.

◆ value_type

template<typename Number>
using BlockVector< Number >::value_type = typename BaseClass::value_type

Import the alias from the base class.

Definition at line 86 of file block_vector.h.

◆ real_type

template<typename Number>
using BlockVector< Number >::real_type = typename BaseClass::real_type

Definition at line 87 of file block_vector.h.

◆ pointer

template<typename Number>
using BlockVector< Number >::pointer = typename BaseClass::pointer

Definition at line 88 of file block_vector.h.

◆ const_pointer

template<typename Number>
using BlockVector< Number >::const_pointer = typename BaseClass::const_pointer

Definition at line 89 of file block_vector.h.

◆ reference

template<typename Number>
using BlockVector< Number >::reference = typename BaseClass::reference

Definition at line 90 of file block_vector.h.

◆ const_reference

template<typename Number>
using BlockVector< Number >::const_reference = typename BaseClass::const_reference

Definition at line 91 of file block_vector.h.

◆ size_type

template<typename Number>
using BlockVector< Number >::size_type = typename BaseClass::size_type

Definition at line 92 of file block_vector.h.

◆ iterator

template<typename Number>
using BlockVector< Number >::iterator = typename BaseClass::iterator

Definition at line 93 of file block_vector.h.

◆ const_iterator

template<typename Number>
using BlockVector< Number >::const_iterator = typename BaseClass::const_iterator

Definition at line 94 of file block_vector.h.

Constructor & Destructor Documentation

◆ BlockVector() [1/8]

template<typename Number>
BlockVector< Number >::BlockVector ( const unsigned int  n_blocks = 0,
const size_type  block_size = 0 
)
explicit

Constructor. There are three ways to use this constructor. First, without any arguments, it generates an object with no blocks. Given one argument, it initializes n_blocks blocks, but these blocks have size zero. The third variant finally initializes all blocks to the same size block_size.

Confer the other constructor further down if you intend to use blocks of different sizes.

◆ BlockVector() [2/8]

template<typename Number>
BlockVector< Number >::BlockVector ( const BlockVector< Number > &  V)

Copy Constructor. Dimension set to that of v, all components are copied from v.

◆ BlockVector() [3/8]

template<typename Number>
BlockVector< Number >::BlockVector ( BlockVector< Number > &&  )
defaultnoexcept

Move constructor. Creates a new vector by stealing the internal data of the given argument vector.

◆ BlockVector() [4/8]

template<typename Number>
template<typename OtherNumber >
BlockVector< Number >::BlockVector ( const BlockVector< OtherNumber > &  v)
explicit

Copy constructor taking a BlockVector of another data type. This will fail if there is no conversion path from OtherNumber to Number. Note that you may lose accuracy when copying to a BlockVector with data elements with less accuracy.

Older versions of gcc did not honor the explicit keyword on template constructors. In such cases, it is easy to accidentally write code that can be very inefficient, since the compiler starts performing hidden conversions. To avoid this, this function is disabled if we have detected a broken compiler during configuration.

◆ BlockVector() [5/8]

template<typename Number>
BlockVector< Number >::BlockVector ( const TrilinosWrappers::MPI::BlockVector< Number > &  v)

A copy constructor taking a (parallel) Trilinos block vector and copying it into the deal.II own format.

◆ BlockVector() [6/8]

template<typename Number>
BlockVector< Number >::BlockVector ( const std::vector< size_type > &  block_sizes)

Constructor. Set the number of blocks to block_sizes.size() and initialize each block with block_sizes[i] zero elements.

◆ BlockVector() [7/8]

template<typename Number>
BlockVector< Number >::BlockVector ( const BlockIndices block_indices)

Constructor. Initialize vector to the structure found in the BlockIndices argument.

◆ BlockVector() [8/8]

template<typename Number>
template<typename InputIterator >
BlockVector< Number >::BlockVector ( const std::vector< size_type > &  block_sizes,
const InputIterator  first,
const InputIterator  end 
)

Constructor. Set the number of blocks to block_sizes.size(). Initialize the vector with the elements pointed to by the range of iterators given as second and third argument. Apart from the first argument, this constructor is in complete analogy to the respective constructor of the std::vector class, but the first argument is needed in order to know how to subdivide the block vector into different blocks.

◆ ~BlockVector()

template<typename Number>
BlockVector< Number >::~BlockVector ( )
overridedefault

Destructor. Clears memory

Member Function Documentation

◆ compress()

template<typename Number>
void BlockVector< Number >::compress ( ::VectorOperation::values  operation = ::VectorOperation::unknown)

Call the compress() function on all the subblocks.

This functionality only needs to be called if using MPI based vectors and exists in other objects for compatibility.

See Compressing distributed objects for more information.

◆ has_ghost_elements()

template<typename Number>
bool BlockVector< Number >::has_ghost_elements ( ) const

Returns false as this is a serial block vector.

This functionality only needs to be called if using MPI based vectors and exists in other objects for compatibility.

◆ operator=() [1/6]

template<typename Number>
BlockVector& BlockVector< Number >::operator= ( const value_type  s)

Copy operator: fill all components of the vector with the given scalar value.

◆ operator=() [2/6]

template<typename Number>
BlockVector<Number>& BlockVector< Number >::operator= ( const BlockVector< Number > &  v)

Copy operator for arguments of the same type. Resize the present vector if necessary.

◆ operator=() [3/6]

template<typename Number>
BlockVector<Number>& BlockVector< Number >::operator= ( BlockVector< Number > &&  )
default

Move the given vector. This operator replaces the present vector with the contents of the given argument vector.

◆ operator=() [4/6]

template<typename Number>
template<class Number2 >
BlockVector<Number>& BlockVector< Number >::operator= ( const BlockVector< Number2 > &  V)

Copy operator for template arguments of different types. Resize the present vector if necessary.

◆ operator=() [5/6]

template<typename Number>
BlockVector<Number>& BlockVector< Number >::operator= ( const Vector< Number > &  V)

Copy a regular vector into a block vector.

◆ operator=() [6/6]

template<typename Number>
BlockVector<Number>& BlockVector< Number >::operator= ( const TrilinosWrappers::MPI::BlockVector< Number > &  V)

A copy constructor from a Trilinos block vector to a deal.II block vector.

◆ reinit() [1/4]

template<typename Number>
void BlockVector< Number >::reinit ( const unsigned int  n_blocks,
const size_type  block_size = 0,
const bool  omit_zeroing_entries = false 
)

Reinitialize the BlockVector to contain n_blocks blocks of size block_size each.

If the second argument is left at its default value, then the block vector allocates the specified number of blocks but leaves them at zero size. You then need to later reinitialize the individual blocks, and call collect_sizes() to update the block system's knowledge of its individual block's sizes.

If omit_zeroing_entries==false, the vector is filled with zeros.

◆ reinit() [2/4]

template<typename Number>
void BlockVector< Number >::reinit ( const std::vector< size_type > &  block_sizes,
const bool  omit_zeroing_entries = false 
)

Reinitialize the BlockVector such that it contains block_sizes.size() blocks. Each block is reinitialized to dimension block_sizes[i].

If the number of blocks is the same as before this function was called, all vectors remain the same and reinit() is called for each vector.

If omit_zeroing_entries==false, the vector is filled with zeros.

Note that you must call this (or the other reinit() functions) function, rather than calling the reinit() functions of an individual block, to allow the block vector to update its caches of vector sizes. If you call reinit() on one of the blocks, then subsequent actions on this object may yield unpredictable results since they may be routed to the wrong block.

◆ reinit() [3/4]

template<typename Number>
void BlockVector< Number >::reinit ( const BlockIndices block_indices,
const bool  omit_zeroing_entries = false 
)

Reinitialize the BlockVector to reflect the structure found in BlockIndices.

If the number of blocks is the same as before this function was called, all vectors remain the same and reinit() is called for each vector.

If omit_zeroing_entries==false, the vector is filled with zeros.

◆ reinit() [4/4]

template<typename Number>
template<typename Number2 >
void BlockVector< Number >::reinit ( const BlockVector< Number2 > &  V,
const bool  omit_zeroing_entries = false 
)

Change the dimension to that of the vector V. The same applies as for the other reinit() function.

The elements of V are not copied, i.e. this function is the same as calling reinit (V.size(), omit_zeroing_entries).

Note that you must call this (or the other reinit() functions) function, rather than calling the reinit() functions of an individual block, to allow the block vector to update its caches of vector sizes. If you call reinit() of one of the blocks, then subsequent actions of this object may yield unpredictable results since they may be routed to the wrong block.

◆ scale()

template<typename Number>
template<class BlockVector2 >
void BlockVector< Number >::scale ( const BlockVector2 &  v)

Multiply each element of this vector by the corresponding element of v.

◆ swap()

template<typename Number>
void BlockVector< Number >::swap ( BlockVector< Number > &  v)

Swap the contents of this vector and the other vector v. One could do this operation with a temporary variable and copying over the data elements, but this function is significantly more efficient since it only swaps the pointers to the data of the two vectors and therefore does not need to allocate temporary storage and move data around.

This function is analogous to the swap() function of all C++ standard containers. Also, there is a global function swap(u,v) that simply calls u.swap(v), again in analogy to standard functions.

◆ print()

template<typename Number>
void BlockVector< Number >::print ( std::ostream &  out,
const unsigned int  precision = 3,
const bool  scientific = true,
const bool  across = true 
) const

Print to a stream.

◆ block_write()

template<typename Number>
void BlockVector< Number >::block_write ( std::ostream &  out) const

Write the vector en bloc to a stream. This is done in a binary mode, so the output is neither readable by humans nor (probably) by other computers using a different operating system or number format.

◆ block_read()

template<typename Number>
void BlockVector< Number >::block_read ( std::istream &  in)

Read a vector en block from a file. This is done using the inverse operations to the above function, so it is reasonably fast because the bitstream is not interpreted.

The vector is resized if necessary.

A primitive form of error checking is performed which will recognize the bluntest attempts to interpret some data as a vector stored bitwise to a file, but not more.

◆ collect_sizes()

void BlockVectorBase< Vector< Number > >::collect_sizes ( )
inherited

Update internal structures after resizing vectors. Whenever you reinited a block of a block vector, the internal data structures are corrupted. Therefore, you should call this function after all blocks got their new size.

◆ block() [1/2]

BlockType& BlockVectorBase< Vector< Number > >::block ( const unsigned int  i)
inherited

Access to a single block.

◆ block() [2/2]

const BlockType& BlockVectorBase< Vector< Number > >::block ( const unsigned int  i) const
inherited

Read-only access to a single block.

◆ get_block_indices()

const BlockIndices& BlockVectorBase< Vector< Number > >::get_block_indices ( ) const
inherited

Return a reference on the object that describes the mapping between block and global indices. The use of this function is highly deprecated and it should vanish in one of the next versions

◆ n_blocks()

unsigned int BlockVectorBase< Vector< Number > >::n_blocks ( ) const
inherited

Number of blocks.

◆ size()

std::size_t BlockVectorBase< Vector< Number > >::size ( ) const
inherited

Return dimension of the vector. This is the sum of the dimensions of all components.

◆ locally_owned_elements()

IndexSet BlockVectorBase< Vector< Number > >::locally_owned_elements ( ) const
inherited

Return an index set that describes which elements of this vector are owned by the current processor. Note that this index set does not include elements this vector may store locally as ghost elements but that are in fact owned by another processor. As a consequence, the index sets returned on different processors if this is a distributed vector will form disjoint sets that add up to the complete index set. Obviously, if a vector is created on only one processor, then the result would satisfy

vec.locally_owned_elements() == complete_index_set (vec.size())

For block vectors, this function returns the union of the locally owned elements of the individual blocks, shifted by their respective index offsets.

◆ begin() [1/2]

iterator BlockVectorBase< Vector< Number > >::begin ( )
inherited

Return an iterator pointing to the first element.

◆ begin() [2/2]

const_iterator BlockVectorBase< Vector< Number > >::begin ( ) const
inherited

Return an iterator pointing to the first element of a constant block vector.

◆ end() [1/2]

iterator BlockVectorBase< Vector< Number > >::end ( )
inherited

Return an iterator pointing to the element past the end.

◆ end() [2/2]

const_iterator BlockVectorBase< Vector< Number > >::end ( ) const
inherited

Return an iterator pointing to the element past the end of a constant block vector.

◆ operator()() [1/2]

value_type BlockVectorBase< Vector< Number > >::operator() ( const size_type  i) const
inherited

Access components, returns U(i).

◆ operator()() [2/2]

reference BlockVectorBase< Vector< Number > >::operator() ( const size_type  i)
inherited

Access components, returns U(i) as a writeable reference.

◆ operator[]() [1/2]

value_type BlockVectorBase< Vector< Number > >::operator[] ( const size_type  i) const
inherited

Access components, returns U(i).

Exactly the same as operator().

◆ operator[]() [2/2]

reference BlockVectorBase< Vector< Number > >::operator[] ( const size_type  i)
inherited

Access components, returns U(i) as a writeable reference.

Exactly the same as operator().

◆ extract_subvector_to() [1/2]

void BlockVectorBase< Vector< Number > >::extract_subvector_to ( const std::vector< size_type > &  indices,
std::vector< OtherNumber > &  values 
) const
inherited

Instead of getting individual elements of a vector via operator(), this function allows getting a whole set of elements at once. The indices of the elements to be read are stated in the first argument, the corresponding values are returned in the second.

If the current vector is called v, then this function is the equivalent to the code

for (unsigned int i=0; i<indices.size(); ++i)
values[i] = v[indices[i]];
Precondition
The sizes of the indices and values arrays must be identical.

◆ extract_subvector_to() [2/2]

void BlockVectorBase< Vector< Number > >::extract_subvector_to ( ForwardIterator  indices_begin,
const ForwardIterator  indices_end,
OutputIterator  values_begin 
) const
inherited

Instead of getting individual elements of a vector via operator(), this function allows getting a whole set of elements at once. In contrast to the previous function, this function obtains the indices of the elements by dereferencing all elements of the iterator range provided by the first two arguments, and puts the vector values into memory locations obtained by dereferencing a range of iterators starting at the location pointed to by the third argument.

If the current vector is called v, then this function is the equivalent to the code

ForwardIterator indices_p = indices_begin;
OutputIterator values_p = values_begin;
while (indices_p != indices_end)
{
*values_p = v[*indices_p];
++indices_p;
++values_p;
}
Precondition
It must be possible to write into as many memory locations starting at values_begin as there are iterators between indices_begin and indices_end.

◆ operator==()

bool BlockVectorBase< Vector< Number > >::operator== ( const BlockVectorBase< VectorType2 > &  v) const
inherited

Check for equality of two block vector types. This operation is only allowed if the two vectors already have the same block structure.

◆ operator*()

value_type BlockVectorBase< Vector< Number > >::operator* ( const BlockVectorBase< Vector< Number > > &  V) const
inherited

\(U = U * V\): scalar product.

◆ norm_sqr()

real_type BlockVectorBase< Vector< Number > >::norm_sqr ( ) const
inherited

Return the square of the \(l_2\)-norm.

◆ mean_value()

value_type BlockVectorBase< Vector< Number > >::mean_value ( ) const
inherited

Return the mean value of the elements of this vector.

◆ l1_norm()

real_type BlockVectorBase< Vector< Number > >::l1_norm ( ) const
inherited

Return the \(l_1\)-norm of the vector, i.e. the sum of the absolute values.

◆ l2_norm()

real_type BlockVectorBase< Vector< Number > >::l2_norm ( ) const
inherited

Return the \(l_2\)-norm of the vector, i.e. the square root of the sum of the squares of the elements.

◆ linfty_norm()

real_type BlockVectorBase< Vector< Number > >::linfty_norm ( ) const
inherited

Return the maximum absolute value of the elements of this vector, which is the \(l_\infty\)-norm of a vector.

◆ add_and_dot()

value_type BlockVectorBase< Vector< Number > >::add_and_dot ( const value_type  a,
const BlockVectorBase< Vector< Number > > &  V,
const BlockVectorBase< Vector< Number > > &  W 
)
inherited

Performs a combined operation of a vector addition and a subsequent inner product, returning the value of the inner product. In other words, the result of this function is the same as if the user called

this->add(a, V);
return_value = *this * W;

The reason this function exists is that this operation involves less memory transfer than calling the two functions separately on deal.II's vector classes (Vector<Number> and LinearAlgebra::distributed::Vector<double>). This method only needs to load three vectors, this, V, W, whereas calling separate methods means to load the calling vector this twice. Since most vector operations are memory transfer limited, this reduces the time by 25% (or 50% if W equals this).

For complex-valued vectors, the scalar product in the second step is implemented as \(\left<v,w\right>=\sum_i v_i \bar{w_i}\).

◆ in_local_range()

bool BlockVectorBase< Vector< Number > >::in_local_range ( const size_type  global_index) const
inherited

Return true if the given global index is in the local range of this processor. Asks the corresponding block.

◆ all_zero()

bool BlockVectorBase< Vector< Number > >::all_zero ( ) const
inherited

Return whether the vector contains only elements with value zero. This function is mainly for internal consistency check and should seldom be used when not in debug mode since it uses quite some time.

◆ is_non_negative()

bool BlockVectorBase< Vector< Number > >::is_non_negative ( ) const
inherited

Return true if the vector has no negative entries, i.e. all entries are zero or positive. This function is used, for example, to check whether refinement indicators are really all positive (or zero).

◆ operator+=()

BlockVectorBase& BlockVectorBase< Vector< Number > >::operator+= ( const BlockVectorBase< Vector< Number > > &  V)
inherited

Addition operator. Fast equivalent to U.add(1, V).

◆ operator-=()

BlockVectorBase& BlockVectorBase< Vector< Number > >::operator-= ( const BlockVectorBase< Vector< Number > > &  V)
inherited

Subtraction operator. Fast equivalent to U.add(-1, V).

◆ add() [1/6]

void BlockVectorBase< Vector< Number > >::add ( const std::vector< size_type > &  indices,
const std::vector< Number > &  values 
)
inherited

A collective add operation: This function adds a whole set of values stored in values to the vector components specified by indices.

◆ add() [2/6]

void BlockVectorBase< Vector< Number > >::add ( const std::vector< size_type > &  indices,
const Vector< Number > &  values 
)
inherited

This is a second collective add operation. As a difference, this function takes a deal.II vector of values.

◆ add() [3/6]

void BlockVectorBase< Vector< Number > >::add ( const size_type  n_elements,
const size_type indices,
const Number *  values 
)
inherited

Take an address where n_elements are stored contiguously and add them into the vector. Handles all cases which are not covered by the other two add() functions above.

◆ add() [4/6]

void BlockVectorBase< Vector< Number > >::add ( const value_type  s)
inherited

\(U(0-DIM)+=s\). Addition of s to all components. Note that s is a scalar and not a vector.

◆ add() [5/6]

void BlockVectorBase< Vector< Number > >::add ( const value_type  a,
const BlockVectorBase< Vector< Number > > &  V 
)
inherited

U+=a*V. Simple addition of a scaled vector.

◆ add() [6/6]

void BlockVectorBase< Vector< Number > >::add ( const value_type  a,
const BlockVectorBase< Vector< Number > > &  V,
const value_type  b,
const BlockVectorBase< Vector< Number > > &  W 
)
inherited

U+=a*V+b*W. Multiple addition of scaled vectors.

◆ sadd() [1/4]

void BlockVectorBase< Vector< Number > >::sadd ( const value_type  s,
const BlockVectorBase< Vector< Number > > &  V 
)
inherited

U=s*U+V. Scaling and simple vector addition.

◆ sadd() [2/4]

void BlockVectorBase< Vector< Number > >::sadd ( const value_type  s,
const value_type  a,
const BlockVectorBase< Vector< Number > > &  V 
)
inherited

U=s*U+a*V. Scaling and simple addition.

◆ sadd() [3/4]

void BlockVectorBase< Vector< Number > >::sadd ( const value_type  s,
const value_type  a,
const BlockVectorBase< Vector< Number > > &  V,
const value_type  b,
const BlockVectorBase< Vector< Number > > &  W 
)
inherited

U=s*U+a*V+b*W. Scaling and multiple addition.

◆ sadd() [4/4]

void BlockVectorBase< Vector< Number > >::sadd ( const value_type  s,
const value_type  a,
const BlockVectorBase< Vector< Number > > &  V,
const value_type  b,
const BlockVectorBase< Vector< Number > > &  W,
const value_type  c,
const BlockVectorBase< Vector< Number > > &  X 
)
inherited

U=s*U+a*V+b*W+c*X. Scaling and multiple addition.

◆ operator*=()

BlockVectorBase& BlockVectorBase< Vector< Number > >::operator*= ( const value_type  factor)
inherited

Scale each element of the vector by a constant value.

◆ operator/=()

BlockVectorBase& BlockVectorBase< Vector< Number > >::operator/= ( const value_type  factor)
inherited

Scale each element of the vector by the inverse of the given value.

◆ equ()

void BlockVectorBase< Vector< Number > >::equ ( const value_type  a,
const BlockVector2 &  V 
)
inherited

U=a*V. Assignment.

◆ update_ghost_values()

void BlockVectorBase< Vector< Number > >::update_ghost_values ( ) const
inherited

Update the ghost values by calling update_ghost_values for each block.

◆ memory_consumption()

std::size_t BlockVectorBase< Vector< Number > >::memory_consumption ( ) const
inherited

Determine an estimate for the memory consumption (in bytes) of this object.

◆ subscribe()

void Subscriptor::subscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Subscribes a user of the object by storing the pointer validity. The subscriber may be identified by text supplied as identifier.

Definition at line 136 of file subscriptor.cc.

◆ unsubscribe()

void Subscriptor::unsubscribe ( std::atomic< bool > *const  validity,
const std::string &  identifier = "" 
) const
inherited

Unsubscribes a user from the object.

Note
The identifier and the validity pointer must be the same as the one supplied to subscribe().

Definition at line 156 of file subscriptor.cc.

◆ n_subscriptions()

unsigned int Subscriptor::n_subscriptions ( ) const
inlineinherited

Return the present number of subscriptions to this object. This allows to use this class for reference counted lifetime determination where the last one to unsubscribe also deletes the object.

Definition at line 290 of file subscriptor.h.

◆ list_subscribers() [1/2]

template<typename StreamType >
void Subscriptor::list_subscribers ( StreamType &  stream) const
inlineinherited

List the subscribers to the input stream.

Definition at line 307 of file subscriptor.h.

◆ list_subscribers() [2/2]

void Subscriptor::list_subscribers ( ) const
inherited

List the subscribers to deallog.

Definition at line 204 of file subscriptor.cc.

◆ serialize()

template<class Archive >
void Subscriptor::serialize ( Archive &  ar,
const unsigned int  version 
)
inlineinherited

Read or write the data of this object to or from a stream for the purpose of serialization.

This function does not actually serialize any of the member variables of this class. The reason is that what this class stores is only who subscribes to this object, but who does so at the time of storing the contents of this object does not necessarily have anything to do with who subscribes to the object when it is restored. Consequently, we do not want to overwrite the subscribers at the time of restoring, and then there is no reason to write the subscribers out in the first place.

Definition at line 299 of file subscriptor.h.

Friends And Related Function Documentation

◆ swap() [1/2]

template<typename Number >
void swap ( BlockVector< Number > &  u,
BlockVector< Number > &  v 
)
related

Global function which overloads the default implementation of the C++ standard library which uses a temporary object. The function simply exchanges the data of the two vectors.

Definition at line 489 of file block_vector.h.

◆ swap() [2/2]

template<typename Number >
void swap ( LinearAlgebra::distributed::BlockVector< Number > &  u,
LinearAlgebra::distributed::BlockVector< Number > &  v 
)
related

Global function which overloads the default implementation of the C++ standard library which uses a temporary object. The function simply exchanges the data of the two vectors.

Definition at line 713 of file la_parallel_block_vector.h.

Member Data Documentation

◆ components

std::vector<Vector< Number > > BlockVectorBase< Vector< Number > >::components
protectedinherited

Pointer to the array of components.

Definition at line 949 of file block_vector_base.h.

◆ block_indices

BlockIndices BlockVectorBase< Vector< Number > >::block_indices
protectedinherited

Object managing the transformation between global indices and indices within the different blocks.

Definition at line 955 of file block_vector_base.h.


The documentation for this class was generated from the following files: