Reference documentation for deal.II version Git 5533784 2018-12-09 20:47:46 -0500
\(\newcommand{\dealcoloneq}{\mathrel{\vcenter{:}}=}\)
The step-16 tutorial program

This tutorial depends on step-6.

Table of contents
  1. Introduction
  2. The commented program
  1. Results
  2. The plain program

Note: A variant called step-16b of this tutorial exists, that uses MeshWorker and LocalIntegrators instead of assembling matrices manually as it is done in this tutorial.

Introduction

This example shows the basic usage of the multilevel functions in deal.II. It solves almost the same problem as used in step-6, but demonstrating the things one has to provide when using multigrid as a preconditioner. In particular, this requires that we define a hierarchy of levels, provide transfer operators from one level to the next and back, and provide representations of the Laplace operator on each level.

In order to allow sufficient flexibility in conjunction with systems of differential equations and block preconditioners, quite a few different objects have to be created before starting the multilevel method, although most of what needs to be done is provided by deal.II itself. These are

Most of these objects will only be needed inside the function that actually solves the linear system. There, these objects are combined in an object of type Multigrid, containing the implementation of the V-cycle, which is in turn used by the preconditioner PreconditionMG, ready for plug-in into a linear solver of the LAC library.

The multigrid method implemented here for adaptively refined meshes follows the outline in the Multigrid paper, which describes the underlying implementation in deal.II and also introduces a lot of the nomenclature. First, we have to distinguish between level meshes, namely cells that have the same refinement distance from the coarse mesh, and the leaf mesh consisting of active cells of the hierarchy (in older work we refer to this as the global mesh, but this term is overused). Most importantly, the leaf mesh is not identical with the level mesh on the finest level. The following image shows what we consider to be a "level mesh":

multigrid.png

The fine level in this mesh consists only of the degrees of freedom that are defined on the refined cells, but does not extend to that part of the domain that is not refined. While this guarantees that the overall effort grows as \({\cal O}(N)\) as necessary for optimal multigrid complexity, it leads to problems when defining where to smooth and what boundary conditions to pose for the operators defined on individual levels if the level boundary is not an external boundary. These questions are discussed in detail in the article cited above.

The testcase

The problem we solve here is similar to step-6, with two main differences: first, the multigrid preconditioner, obviously. We also change the discontinuity of the coefficients such that the local assembler does not look more complicated than necessary.

The commented program

Include files

Again, the first few include files are already known, so we won't comment on them:

#include <deal.II/base/quadrature_lib.h>
#include <deal.II/base/function.h>
#include <deal.II/base/logstream.h>
#include <deal.II/base/utilities.h>
#include <deal.II/lac/affine_constraints.h>
#include <deal.II/lac/vector.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/sparse_matrix.h>
#include <deal.II/lac/solver_cg.h>
#include <deal.II/lac/precondition.h>
#include <deal.II/grid/tria.h>
#include <deal.II/grid/tria_accessor.h>
#include <deal.II/grid/tria_iterator.h>
#include <deal.II/grid/grid_generator.h>
#include <deal.II/grid/grid_refinement.h>
#include <deal.II/dofs/dof_accessor.h>
#include <deal.II/dofs/dof_tools.h>
#include <deal.II/fe/fe_q.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/numerics/vector_tools.h>
#include <deal.II/numerics/data_out.h>
#include <deal.II/numerics/error_estimator.h>

These, now, are the include necessary for the multilevel methods. The first one declares how to handle Dirichlet boundary conditions on each of the levels of the multigrid method. For the actual description of the degrees of freedom, we do not need any new include file because DoFHandler already has all necessary methods implemented. We will only need to distribute the DoFs for the levels further down.

The rest of the include files deals with the mechanics of multigrid as a linear operator (solver or preconditioner).

#include <deal.II/multigrid/mg_constrained_dofs.h>
#include <deal.II/multigrid/multigrid.h>
#include <deal.II/multigrid/mg_transfer.h>
#include <deal.II/multigrid/mg_tools.h>
#include <deal.II/multigrid/mg_coarse.h>
#include <deal.II/multigrid/mg_smoother.h>
#include <deal.II/multigrid/mg_matrix.h>

We will be using MeshWorker::mesh_loop to loop over the cells, so include it here:

#include <deal.II/meshworker/mesh_loop.h>

This is C++:

#include <iostream>
#include <fstream>
using namespace dealii;
namespace Step16
{

The Scratch and Copy objects

We use MeshWorker::mesh_loop() to assemble our matrices. For this, we need a ScratchData object to store temporary data on each cell (this is just the FEValues object) and a CopyData object that will contain the output of each cell assembly. For more details about the usage of scratch and copy objects, see the WorkStream namespace.

template <int dim>
struct ScratchData
{
ScratchData(const Mapping<dim> & mapping,
const FiniteElement<dim> &fe,
const unsigned int quadrature_degree,
const UpdateFlags update_flags)
: fe_values(mapping, fe, QGauss<dim>(quadrature_degree), update_flags)
{}
ScratchData(const ScratchData<dim> &scratch_data)
: fe_values(scratch_data.fe_values.get_mapping(),
scratch_data.fe_values.get_fe(),
scratch_data.fe_values.get_quadrature(),
scratch_data.fe_values.get_update_flags())
{}
FEValues<dim> fe_values;
};
struct CopyData
{
unsigned int level;
FullMatrix<double> cell_matrix;
Vector<double> cell_rhs;
std::vector<types::global_dof_index> local_dof_indices;
template <class Iterator>
void reinit(const Iterator &cell, unsigned int dofs_per_cell)
{
cell_matrix.reinit(dofs_per_cell, dofs_per_cell);
cell_rhs.reinit(dofs_per_cell);
local_dof_indices.resize(dofs_per_cell);
cell->get_active_or_mg_dof_indices(local_dof_indices);
level = cell->level();
}
};

The LaplaceProblem class template

This main class is similar to the same class in step-6. As far as member functions is concerned, the only additions are:

template <int dim>
class LaplaceProblem
{
public:
LaplaceProblem(const unsigned int degree);
void run();
private:
template <class Iterator>
void cell_worker(const Iterator & cell,
ScratchData<dim> &scratch_data,
CopyData & copy_data);
void setup_system();
void assemble_system();
void assemble_multigrid();
void solve();
void refine_grid();
void output_results(const unsigned int cycle) const;
Triangulation<dim> triangulation;
DoFHandler<dim> dof_handler;
SparsityPattern sparsity_pattern;
SparseMatrix<double> system_matrix;
Vector<double> solution;
Vector<double> system_rhs;
const unsigned int degree;

The following members are the essential data structures for the multigrid method. The first four represent the sparsity patterns and the matrices on individual levels of the multilevel hierarchy, very much like the objects for the global mesh above.

Then we have two new matrices only needed for multigrid methods with local smoothing on adaptive meshes. They convey data between the interior part of the refined region and the refinement edge, as outlined in detail in the multigrid paper.

The last object stores information about the boundary indices on each level and information about indices lying on a refinement edge between two different refinement levels. It thus serves a similar purpose as AffineConstraints, but on each level.

MGLevelObject<SparsityPattern> mg_sparsity_patterns;
MGLevelObject<SparsityPattern> mg_interface_sparsity_patterns;
MGLevelObject<SparseMatrix<double>> mg_interface_matrices;
MGConstrainedDoFs mg_constrained_dofs;
};

The LaplaceProblem class implementation

Just one short remark about the constructor of the Triangulation: by convention, all adaptively refined triangulations in deal.II never change by more than one level across a face between cells. For our multigrid algorithms, however, we need a slightly stricter guarantee, namely that the mesh also does not change by more than refinement level across vertices that might connect two cells. In other words, we must prevent the following situation:

limit_level_difference_at_vertices.png

This is achieved by passing the Triangulation::limit_level_difference_at_vertices flag to the constructor of the triangulation class.

template <int dim>
LaplaceProblem<dim>::LaplaceProblem(const unsigned int degree)
: triangulation(Triangulation<dim>::limit_level_difference_at_vertices)
, fe(degree)
, dof_handler(triangulation)
, degree(degree)
{}

LaplaceProblem::setup_system

In addition to just distributing the degrees of freedom in the DoFHandler, we do the same on each level. Then, we follow the same procedure as before to set up the system on the leaf mesh.

template <int dim>
void LaplaceProblem<dim>::setup_system()
{
dof_handler.distribute_dofs(fe);
dof_handler.distribute_mg_dofs();
std::cout << " Number of degrees of freedom: " << dof_handler.n_dofs()
<< " (by level: ";
for (unsigned int level = 0; level < triangulation.n_levels(); ++level)
std::cout << dof_handler.n_dofs(level)
<< (level == triangulation.n_levels() - 1 ? ")" : ", ");
std::cout << std::endl;
solution.reinit(dof_handler.n_dofs());
system_rhs.reinit(dof_handler.n_dofs());
constraints.clear();
DoFTools::make_hanging_node_constraints(dof_handler, constraints);
std::set<types::boundary_id> dirichlet_boundary_ids = {0};
Functions::ZeroFunction<dim> homogeneous_dirichlet_bc;
const std::map<types::boundary_id, const Function<dim> *>
dirichlet_boundary_functions = {
{types::boundary_id(0), &homogeneous_dirichlet_bc}};
dirichlet_boundary_functions,
constraints);
constraints.close();
{
DynamicSparsityPattern dsp(dof_handler.n_dofs(), dof_handler.n_dofs());
DoFTools::make_sparsity_pattern(dof_handler, dsp, constraints);
sparsity_pattern.copy_from(dsp);
}
system_matrix.reinit(sparsity_pattern);

The multigrid constraints have to be initialized. They need to know where Dirichlet boundary conditions are prescribed.

mg_constrained_dofs.clear();
mg_constrained_dofs.initialize(dof_handler);
mg_constrained_dofs.make_zero_boundary_constraints(dof_handler,
dirichlet_boundary_ids);

Now for the things that concern the multigrid data structures. First, we resize the multilevel objects to hold matrices and sparsity patterns for every level. The coarse level is zero (this is mandatory right now but may change in a future revision). Note that these functions take a complete, inclusive range here (not a starting index and size), so the finest level is n_levels-1. We first have to resize the container holding the SparseMatrix classes, since they have to release their SparsityPattern before the can be destroyed upon resizing.

const unsigned int n_levels = triangulation.n_levels();
mg_interface_matrices.resize(0, n_levels - 1);
mg_matrices.resize(0, n_levels - 1);
mg_sparsity_patterns.resize(0, n_levels - 1);
mg_interface_sparsity_patterns.resize(0, n_levels - 1);

Now, we have to provide a matrix on each level. To this end, we first use the MGTools::make_sparsity_pattern function to generate a preliminary compressed sparsity pattern on each level (see the Sparsity patterns module for more information on this topic) and then copy it over to the one we really want. The next step is to initialize the interface matrices with the fitting sparsity pattern.

It may be worth pointing out that the interface matrices only have entries for degrees of freedom that sit at or next to the interface between coarser and finer levels of the mesh. They are therefore even sparser than the matrices on the individual levels of our multigrid hierarchy. Therefore, we use a function specifically build for this purpose to generate it.

for (unsigned int level = 0; level < n_levels; ++level)
{
{
DynamicSparsityPattern dsp(dof_handler.n_dofs(level),
dof_handler.n_dofs(level));
MGTools::make_sparsity_pattern(dof_handler, dsp, level);
mg_sparsity_patterns[level].copy_from(dsp);
mg_matrices[level].reinit(mg_sparsity_patterns[level]);
}
{
DynamicSparsityPattern dsp(dof_handler.n_dofs(level),
dof_handler.n_dofs(level));
mg_constrained_dofs,
dsp,
level);
mg_interface_sparsity_patterns[level].copy_from(dsp);
mg_interface_matrices[level].reinit(
mg_interface_sparsity_patterns[level]);
}
}
}

LaplaceProblem::cell_worker

The cell_worker function is used to assemble the matrix and right-hand side on the given cell. This function is used for the active cells to generate the system_matrix and on each level to build the level matrices.

Note that we also assemble a right-hand side when called from assemble_multigrid() even though it is not used.

template <int dim>
template <class Iterator>
void LaplaceProblem<dim>::cell_worker(const Iterator & cell,
ScratchData<dim> &scratch_data,
CopyData & copy_data)
{
FEValues<dim> &fe_values = scratch_data.fe_values;
fe_values.reinit(cell);
const unsigned int dofs_per_cell = fe_values.get_fe().dofs_per_cell;
const unsigned int n_q_points = fe_values.get_quadrature().size();
copy_data.reinit(cell, dofs_per_cell);
const std::vector<double> &JxW = fe_values.get_JxW_values();
for (unsigned int q = 0; q < n_q_points; ++q)
{
const double coefficient =
(fe_values.get_quadrature_points()[q][0] < 0.0) ? 1.0 : 0.1;

(cell->center().square() < 0.5 * 0.5) ? 10.0:1.0;

for (unsigned int i = 0; i < dofs_per_cell; ++i)
{
for (unsigned int j = 0; j < dofs_per_cell; ++j)
{
copy_data.cell_matrix(i, j) +=
coefficient *
(fe_values.shape_grad(i, q) * fe_values.shape_grad(j, q)) *
JxW[q];
}
copy_data.cell_rhs(i) += 1.0 * fe_values.shape_value(i, q) * JxW[q];
}
}
}

LaplaceProblem::assemble_system

The following function assembles the linear system on the active cells of the mesh. For this, we pass two lambda functions to the mesh_loop() function. The cell_worker function redirects to the class member function of the same name, while the copier is specific to this function and copies local matrix and vector to the corresponding global ones using the constraints.

template <int dim>
void LaplaceProblem<dim>::assemble_system()
{
MappingQ1<dim> mapping;
auto cell_worker =
[&](const typename DoFHandler<dim>::active_cell_iterator &cell,
ScratchData<dim> & scratch_data,
CopyData & copy_data) {
this->cell_worker(cell, scratch_data, copy_data);
};
auto copier = [&](const CopyData &cd) {
this->constraints.distribute_local_to_global(cd.cell_matrix,
cd.cell_rhs,
cd.local_dof_indices,
system_matrix,
system_rhs);
};
const unsigned int n_gauss_points = degree + 1;
ScratchData<dim> scratch_data(mapping,
fe,
n_gauss_points,
dof_handler.end(),
cell_worker,
copier,
scratch_data,
CopyData(),
}

LaplaceProblem::assemble_multigrid

The next function is the one that builds the matrices that define the multigrid method on each level of the mesh. The integration core is the same as above, but the loop below will go over all existing cells instead of just the active ones, and the results must be entered into the correct level matrices. Fortunately, MeshWorker hides most of that from us, and thus the difference between this function and the previous lies only in the setup of the assembler and the different iterators in the loop.

We generate an AffineConstraints<> object for each level containing the boundary and interface dofs as constrained entries. The corresponding object is then used to generate the level matrices.

template <int dim>
void LaplaceProblem<dim>::assemble_multigrid()
{
MappingQ1<dim> mapping;
const unsigned int n_levels = triangulation.n_levels();
std::vector<AffineConstraints<>> boundary_constraints(n_levels);
for (unsigned int level = 0; level < n_levels; ++level)
{
IndexSet dofset;
level,
dofset);
boundary_constraints[level].reinit(dofset);
boundary_constraints[level].add_lines(
mg_constrained_dofs.get_refinement_edge_indices(level));
boundary_constraints[level].add_lines(
mg_constrained_dofs.get_boundary_indices(level));
boundary_constraints[level].close();
}
auto cell_worker =
[&](const typename DoFHandler<dim>::level_cell_iterator &cell,
ScratchData<dim> & scratch_data,
CopyData & copy_data) {
this->cell_worker(cell, scratch_data, copy_data);
};
auto copier = [&](const CopyData &cd) {
boundary_constraints[cd.level].distribute_local_to_global(
cd.cell_matrix, cd.local_dof_indices, mg_matrices[cd.level]);
const unsigned int dofs_per_cell = cd.local_dof_indices.size();

TODO EXPLAIN:

for (unsigned int i = 0; i < dofs_per_cell; ++i)
for (unsigned int j = 0; j < dofs_per_cell; ++j)
if (mg_constrained_dofs.is_interface_matrix_entry(
cd.level, cd.local_dof_indices[i], cd.local_dof_indices[j]))
{
mg_interface_matrices[cd.level].add(cd.local_dof_indices[i],
cd.local_dof_indices[j],
cd.cell_matrix(i, j));
}
};
const unsigned int n_gauss_points = degree + 1;
ScratchData<dim> scratch_data(mapping,
fe,
n_gauss_points,
dof_handler.end_mg(),
cell_worker,
copier,
scratch_data,
CopyData(),
}

LaplaceProblem::solve

This is the other function that is significantly different in support of the multigrid solver (or, in fact, the preconditioner for which we use the multigrid method).

Let us start out by setting up two of the components of multilevel methods: transfer operators between levels, and a solver on the coarsest level. In finite element methods, the transfer operators are derived from the finite element function spaces involved and can often be computed in a generic way independent of the problem under consideration. In that case, we can use the MGTransferPrebuilt class that, given the constraints of the final linear system and the MGConstrainedDoFs object that knows about the boundary conditions on the each level and the degrees of freedom on interfaces between different refinement level can build the matrices for those transfer operations from a DoFHandler object with level degrees of freedom.

The second part of the following lines deals with the coarse grid solver. Since our coarse grid is very coarse indeed, we decide for a direct solver (a Householder decomposition of the coarsest level matrix), even if its implementation is not particularly sophisticated. If our coarse mesh had many more cells than the five we have here, something better suited would obviously be necessary here.

template <int dim>
void LaplaceProblem<dim>::solve()
{
MGTransferPrebuilt<Vector<double>> mg_transfer(mg_constrained_dofs);
mg_transfer.build_matrices(dof_handler);
FullMatrix<double> coarse_matrix;
coarse_matrix.copy_from(mg_matrices[0]);
MGCoarseGridHouseholder<> coarse_grid_solver;
coarse_grid_solver.initialize(coarse_matrix);

The next component of a multilevel solver or preconditioner is that we need a smoother on each level. A common choice for this is to use the application of a relaxation method (such as the SOR, Jacobi or Richardson method) or a small number of iterations of a solver method (such as CG or GMRES). The mg::SmootherRelaxation and MGSmootherPrecondition classes provide support for these two kinds of smoothers. Here, we opt for the application of a single SOR iteration. To this end, we define an appropriate alias and then setup a smoother object.

The last step is to initialize the smoother object with our level matrices and to set some smoothing parameters. The initialize() function can optionally take additional arguments that will be passed to the smoother object on each level. In the current case for the SOR smoother, this could, for example, include a relaxation parameter. However, we here leave these at their default values. The call to set_steps() indicates that we will use two pre- and two post-smoothing steps on each level; to use a variable number of smoother steps on different levels, more options can be set in the constructor call to the mg_smoother object.

The last step results from the fact that we use the SOR method as a smoother - which is not symmetric - but we use the conjugate gradient iteration (which requires a symmetric preconditioner) below, we need to let the multilevel preconditioner make sure that we get a symmetric operator even for nonsymmetric smoothers:

mg_smoother.initialize(mg_matrices);
mg_smoother.set_steps(2);
mg_smoother.set_symmetric(true);

The next preparatory step is that we must wrap our level and interface matrices in an object having the required multiplication functions. We will create two objects for the interface objects going from coarse to fine and the other way around; the multigrid algorithm will later use the transpose operator for the latter operation, allowing us to initialize both up and down versions of the operator with the matrices we already built:

mg::Matrix<Vector<double>> mg_matrix(mg_matrices);
mg::Matrix<Vector<double>> mg_interface_up(mg_interface_matrices);
mg::Matrix<Vector<double>> mg_interface_down(mg_interface_matrices);

Now, we are ready to set up the V-cycle operator and the multilevel preconditioner.

mg_matrix, coarse_grid_solver, mg_transfer, mg_smoother, mg_smoother);
mg.set_edge_matrices(mg_interface_down, mg_interface_up);
preconditioner(dof_handler, mg, mg_transfer);

With all this together, we can finally get about solving the linear system in the usual way:

SolverControl solver_control(1000, 1e-12);
SolverCG<> solver(solver_control);
solution = 0;
solver.solve(system_matrix, solution, system_rhs, preconditioner);
std::cout << " Number of CG iterations: " << solver_control.last_step()
<< "\n"
<< std::endl;
constraints.distribute(solution);
}

Postprocessing

The following two functions postprocess a solution once it is computed. In particular, the first one refines the mesh at the beginning of each cycle while the second one outputs results at the end of each such cycle. The functions are almost unchanged from those in step-6.

template <int dim>
void LaplaceProblem<dim>::refine_grid()
{
Vector<float> estimated_error_per_cell(triangulation.n_active_cells());
dof_handler,
QGauss<dim - 1>(degree + 2),
std::map<types::boundary_id, const Function<dim> *>(),
solution,
estimated_error_per_cell);
estimated_error_per_cell,
0.3,
0.03);
}
template <int dim>
void LaplaceProblem<dim>::output_results(const unsigned int cycle) const
{
DataOut<dim> data_out;
data_out.attach_dof_handler(dof_handler);
data_out.add_data_vector(solution, "solution");
data_out.build_patches();
std::ofstream output("solution-" + std::to_string(cycle) + ".vtk");
data_out.write_vtk(output);
}

LaplaceProblem::run

Like several of the functions above, this is almost exactly a copy of the corresponding function in step-6. The only difference is the call to assemble_multigrid that takes care of forming the matrices on every level that we need in the multigrid method.

template <int dim>
void LaplaceProblem<dim>::run()
{
for (unsigned int cycle = 0; cycle < 8; ++cycle)
{
std::cout << "Cycle " << cycle << std::endl;
if (cycle == 0)
{
GridGenerator::hyper_ball(triangulation);
triangulation.refine_global(2);
}
else
refine_grid();
std::cout << " Number of active cells: "
<< triangulation.n_active_cells() << std::endl;
setup_system();
assemble_system();
assemble_multigrid();
solve();
output_results(cycle);
}
}
} // namespace Step16

The main() function

This is again the same function as in step-6:

int main()
{
try
{
using namespace Step16;
LaplaceProblem<2> laplace_problem(1);
laplace_problem.run();
}
catch (std::exception &exc)
{
std::cerr << std::endl
<< std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Exception on processing: " << std::endl
<< exc.what() << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
catch (...)
{
std::cerr << std::endl
<< std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Unknown exception!" << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
return 0;
}

Results

On the finest mesh, the solution looks like this:

More importantly, we would like to see if the multigrid method really improved the solver performance. Therefore, here is the textual output:

Cycle 0
   Number of active cells:       80
   Number of degrees of freedom: 89 (by level: 8, 25, 89)
   Number of CG iterations: 8
Cycle 1
   Number of active cells:       158
   Number of degrees of freedom: 183 (by level: 8, 25, 89, 138)
   Number of CG iterations: 9
Cycle 2
   Number of active cells:       302
   Number of degrees of freedom: 352 (by level: 8, 25, 89, 223, 160)
   Number of CG iterations: 10
Cycle 3
   Number of active cells:       578
   Number of degrees of freedom: 649 (by level: 8, 25, 89, 231, 494, 66)
   Number of CG iterations: 10
Cycle 4
   Number of active cells:       1100
   Number of degrees of freedom: 1218 (by level: 8, 25, 89, 274, 764, 417, 126)
   Number of CG iterations: 10
Cycle 5
   Number of active cells:       2096
   Number of degrees of freedom: 2317 (by level: 8, 25, 89, 304, 779, 1214, 817)
   Number of CG iterations: 11
Cycle 6
   Number of active cells:       3986
   Number of degrees of freedom: 4366 (by level: 8, 25, 89, 337, 836, 2270, 897, 1617)
   Number of CG iterations: 10
Cycle 7
   Number of active cells:       7574
   Number of degrees of freedom: 8350 (by level: 8, 25, 89, 337, 1086, 2835, 2268, 1789, 3217)
   Number of CG iterations: 11

That's almost perfect multigrid performance: the linear residual gets reduced by 12 orders of magnitude in 10 iteration steps, and the results are almost independent of the mesh size. That's obviously in part due to the simple nature of the problem solved, but it shows the power of multigrid methods.

Possible extensions

We encourage you to generate timings for the solve() call and compare to step-6. You will see that the multigrid method has quite an overhead on coarse meshes, but that it always beats other methods on fine meshes because of its optimal complexity.

A close inspection of this program's performance shows that it is mostly dominated by matrix-vector operations. step-37 shows one way how this can be avoided by working with matrix-free methods.

Another avenue would be to use algebraic multigrid methods. The geometric multigrid method used here can at times be a bit awkward to implement because it needs all those additional data structures, and it becomes even more difficult if the program is to run in parallel on machines coupled through MPI, for example. In that case, it would be simpler if one could use a black-box preconditioner that uses some sort of multigrid hierarchy for good performance but can figure out level matrices and similar things by itself. Algebraic multigrid methods do exactly this, and we will use them in step-31 for the solution of a Stokes problem and in step-32 and step-40 for a parallel variation. That said, a parallel version of this example program with MPI can be found in step-50.

Finally, one may want to think how to use geometric multigrid for other kinds of problems, specifically vector valued problems. This is the topic of step-56 where we use the techniques shown here for the Stokes equation.

The plain program

/* ---------------------------------------------------------------------
*
* Copyright (C) 2003 - 2018 by the deal.II authors
*
* This file is part of the deal.II library.
*
* The deal.II library is free software; you can use it, redistribute
* it, and/or modify it under the terms of the GNU Lesser General
* Public License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
* The full text of the license can be found in the file LICENSE.md at
* the top level directory of deal.II.
*
* ---------------------------------------------------------------------
*
* Authors: Guido Kanschat, University of Heidelberg, 2003
* Baerbel Janssen, University of Heidelberg, 2010
* Wolfgang Bangerth, Texas A&M University, 2010
* Timo Heister, Clemson University, 2018
*/
#include <deal.II/base/quadrature_lib.h>
#include <deal.II/base/function.h>
#include <deal.II/base/logstream.h>
#include <deal.II/base/utilities.h>
#include <deal.II/lac/affine_constraints.h>
#include <deal.II/lac/vector.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/sparse_matrix.h>
#include <deal.II/lac/solver_cg.h>
#include <deal.II/lac/precondition.h>
#include <deal.II/grid/tria.h>
#include <deal.II/grid/tria_accessor.h>
#include <deal.II/grid/tria_iterator.h>
#include <deal.II/grid/grid_generator.h>
#include <deal.II/grid/grid_refinement.h>
#include <deal.II/dofs/dof_accessor.h>
#include <deal.II/dofs/dof_tools.h>
#include <deal.II/fe/fe_q.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/numerics/vector_tools.h>
#include <deal.II/numerics/data_out.h>
#include <deal.II/numerics/error_estimator.h>
#include <deal.II/multigrid/mg_constrained_dofs.h>
#include <deal.II/multigrid/multigrid.h>
#include <deal.II/multigrid/mg_transfer.h>
#include <deal.II/multigrid/mg_tools.h>
#include <deal.II/multigrid/mg_coarse.h>
#include <deal.II/multigrid/mg_smoother.h>
#include <deal.II/multigrid/mg_matrix.h>
#include <deal.II/meshworker/mesh_loop.h>
#include <iostream>
#include <fstream>
using namespace dealii;
namespace Step16
{
template <int dim>
struct ScratchData
{
ScratchData(const Mapping<dim> & mapping,
const FiniteElement<dim> &fe,
const unsigned int quadrature_degree,
const UpdateFlags update_flags)
: fe_values(mapping, fe, QGauss<dim>(quadrature_degree), update_flags)
{}
ScratchData(const ScratchData<dim> &scratch_data)
: fe_values(scratch_data.fe_values.get_mapping(),
scratch_data.fe_values.get_fe(),
scratch_data.fe_values.get_quadrature(),
scratch_data.fe_values.get_update_flags())
{}
FEValues<dim> fe_values;
};
struct CopyData
{
unsigned int level;
FullMatrix<double> cell_matrix;
Vector<double> cell_rhs;
std::vector<types::global_dof_index> local_dof_indices;
template <class Iterator>
void reinit(const Iterator &cell, unsigned int dofs_per_cell)
{
cell_matrix.reinit(dofs_per_cell, dofs_per_cell);
cell_rhs.reinit(dofs_per_cell);
local_dof_indices.resize(dofs_per_cell);
cell->get_active_or_mg_dof_indices(local_dof_indices);
level = cell->level();
}
};
template <int dim>
class LaplaceProblem
{
public:
LaplaceProblem(const unsigned int degree);
void run();
private:
template <class Iterator>
void cell_worker(const Iterator & cell,
ScratchData<dim> &scratch_data,
CopyData & copy_data);
void setup_system();
void assemble_system();
void assemble_multigrid();
void solve();
void refine_grid();
void output_results(const unsigned int cycle) const;
Triangulation<dim> triangulation;
DoFHandler<dim> dof_handler;
SparsityPattern sparsity_pattern;
SparseMatrix<double> system_matrix;
Vector<double> solution;
Vector<double> system_rhs;
const unsigned int degree;
MGLevelObject<SparsityPattern> mg_sparsity_patterns;
MGLevelObject<SparsityPattern> mg_interface_sparsity_patterns;
MGLevelObject<SparseMatrix<double>> mg_interface_matrices;
MGConstrainedDoFs mg_constrained_dofs;
};
template <int dim>
LaplaceProblem<dim>::LaplaceProblem(const unsigned int degree)
: triangulation(Triangulation<dim>::limit_level_difference_at_vertices)
, fe(degree)
, dof_handler(triangulation)
, degree(degree)
{}
template <int dim>
void LaplaceProblem<dim>::setup_system()
{
dof_handler.distribute_dofs(fe);
dof_handler.distribute_mg_dofs();
std::cout << " Number of degrees of freedom: " << dof_handler.n_dofs()
<< " (by level: ";
for (unsigned int level = 0; level < triangulation.n_levels(); ++level)
std::cout << dof_handler.n_dofs(level)
<< (level == triangulation.n_levels() - 1 ? ")" : ", ");
std::cout << std::endl;
solution.reinit(dof_handler.n_dofs());
system_rhs.reinit(dof_handler.n_dofs());
constraints.clear();
DoFTools::make_hanging_node_constraints(dof_handler, constraints);
std::set<types::boundary_id> dirichlet_boundary_ids = {0};
Functions::ZeroFunction<dim> homogeneous_dirichlet_bc;
const std::map<types::boundary_id, const Function<dim> *>
dirichlet_boundary_functions = {
{types::boundary_id(0), &homogeneous_dirichlet_bc}};
dirichlet_boundary_functions,
constraints);
constraints.close();
{
DynamicSparsityPattern dsp(dof_handler.n_dofs(), dof_handler.n_dofs());
DoFTools::make_sparsity_pattern(dof_handler, dsp, constraints);
sparsity_pattern.copy_from(dsp);
}
system_matrix.reinit(sparsity_pattern);
mg_constrained_dofs.clear();
mg_constrained_dofs.initialize(dof_handler);
mg_constrained_dofs.make_zero_boundary_constraints(dof_handler,
dirichlet_boundary_ids);
const unsigned int n_levels = triangulation.n_levels();
mg_interface_matrices.resize(0, n_levels - 1);
mg_matrices.resize(0, n_levels - 1);
mg_sparsity_patterns.resize(0, n_levels - 1);
mg_interface_sparsity_patterns.resize(0, n_levels - 1);
for (unsigned int level = 0; level < n_levels; ++level)
{
{
DynamicSparsityPattern dsp(dof_handler.n_dofs(level),
dof_handler.n_dofs(level));
MGTools::make_sparsity_pattern(dof_handler, dsp, level);
mg_sparsity_patterns[level].copy_from(dsp);
mg_matrices[level].reinit(mg_sparsity_patterns[level]);
}
{
DynamicSparsityPattern dsp(dof_handler.n_dofs(level),
dof_handler.n_dofs(level));
mg_constrained_dofs,
dsp,
level);
mg_interface_sparsity_patterns[level].copy_from(dsp);
mg_interface_matrices[level].reinit(
mg_interface_sparsity_patterns[level]);
}
}
}
template <int dim>
template <class Iterator>
void LaplaceProblem<dim>::cell_worker(const Iterator & cell,
ScratchData<dim> &scratch_data,
CopyData & copy_data)
{
FEValues<dim> &fe_values = scratch_data.fe_values;
fe_values.reinit(cell);
const unsigned int dofs_per_cell = fe_values.get_fe().dofs_per_cell;
const unsigned int n_q_points = fe_values.get_quadrature().size();
copy_data.reinit(cell, dofs_per_cell);
const std::vector<double> &JxW = fe_values.get_JxW_values();
for (unsigned int q = 0; q < n_q_points; ++q)
{
const double coefficient =
(fe_values.get_quadrature_points()[q][0] < 0.0) ? 1.0 : 0.1;
for (unsigned int i = 0; i < dofs_per_cell; ++i)
{
for (unsigned int j = 0; j < dofs_per_cell; ++j)
{
copy_data.cell_matrix(i, j) +=
coefficient *
(fe_values.shape_grad(i, q) * fe_values.shape_grad(j, q)) *
JxW[q];
}
copy_data.cell_rhs(i) += 1.0 * fe_values.shape_value(i, q) * JxW[q];
}
}
}
template <int dim>
void LaplaceProblem<dim>::assemble_system()
{
MappingQ1<dim> mapping;
auto cell_worker =
[&](const typename DoFHandler<dim>::active_cell_iterator &cell,
ScratchData<dim> & scratch_data,
CopyData & copy_data) {
this->cell_worker(cell, scratch_data, copy_data);
};
auto copier = [&](const CopyData &cd) {
this->constraints.distribute_local_to_global(cd.cell_matrix,
cd.cell_rhs,
cd.local_dof_indices,
system_matrix,
system_rhs);
};
const unsigned int n_gauss_points = degree + 1;
ScratchData<dim> scratch_data(mapping,
fe,
n_gauss_points,
dof_handler.end(),
cell_worker,
copier,
scratch_data,
CopyData(),
}
template <int dim>
void LaplaceProblem<dim>::assemble_multigrid()
{
MappingQ1<dim> mapping;
const unsigned int n_levels = triangulation.n_levels();
std::vector<AffineConstraints<>> boundary_constraints(n_levels);
for (unsigned int level = 0; level < n_levels; ++level)
{
IndexSet dofset;
level,
dofset);
boundary_constraints[level].reinit(dofset);
boundary_constraints[level].add_lines(
mg_constrained_dofs.get_refinement_edge_indices(level));
boundary_constraints[level].add_lines(
mg_constrained_dofs.get_boundary_indices(level));
boundary_constraints[level].close();
}
auto cell_worker =
[&](const typename DoFHandler<dim>::level_cell_iterator &cell,
ScratchData<dim> & scratch_data,
CopyData & copy_data) {
this->cell_worker(cell, scratch_data, copy_data);
};
auto copier = [&](const CopyData &cd) {
boundary_constraints[cd.level].distribute_local_to_global(
cd.cell_matrix, cd.local_dof_indices, mg_matrices[cd.level]);
const unsigned int dofs_per_cell = cd.local_dof_indices.size();
for (unsigned int i = 0; i < dofs_per_cell; ++i)
for (unsigned int j = 0; j < dofs_per_cell; ++j)
if (mg_constrained_dofs.is_interface_matrix_entry(
cd.level, cd.local_dof_indices[i], cd.local_dof_indices[j]))
{
mg_interface_matrices[cd.level].add(cd.local_dof_indices[i],
cd.local_dof_indices[j],
cd.cell_matrix(i, j));
}
};
const unsigned int n_gauss_points = degree + 1;
ScratchData<dim> scratch_data(mapping,
fe,
n_gauss_points,
dof_handler.end_mg(),
cell_worker,
copier,
scratch_data,
CopyData(),
}
template <int dim>
void LaplaceProblem<dim>::solve()
{
MGTransferPrebuilt<Vector<double>> mg_transfer(mg_constrained_dofs);
mg_transfer.build_matrices(dof_handler);
FullMatrix<double> coarse_matrix;
coarse_matrix.copy_from(mg_matrices[0]);
MGCoarseGridHouseholder<> coarse_grid_solver;
coarse_grid_solver.initialize(coarse_matrix);
mg_smoother.initialize(mg_matrices);
mg_smoother.set_steps(2);
mg_smoother.set_symmetric(true);
mg::Matrix<Vector<double>> mg_matrix(mg_matrices);
mg::Matrix<Vector<double>> mg_interface_up(mg_interface_matrices);
mg::Matrix<Vector<double>> mg_interface_down(mg_interface_matrices);
mg_matrix, coarse_grid_solver, mg_transfer, mg_smoother, mg_smoother);
mg.set_edge_matrices(mg_interface_down, mg_interface_up);
preconditioner(dof_handler, mg, mg_transfer);
SolverControl solver_control(1000, 1e-12);
SolverCG<> solver(solver_control);
solution = 0;
solver.solve(system_matrix, solution, system_rhs, preconditioner);
std::cout << " Number of CG iterations: " << solver_control.last_step()
<< "\n"
<< std::endl;
constraints.distribute(solution);
}
template <int dim>
void LaplaceProblem<dim>::refine_grid()
{
Vector<float> estimated_error_per_cell(triangulation.n_active_cells());
dof_handler,
QGauss<dim - 1>(degree + 2),
std::map<types::boundary_id, const Function<dim> *>(),
solution,
estimated_error_per_cell);
estimated_error_per_cell,
0.3,
0.03);
}
template <int dim>
void LaplaceProblem<dim>::output_results(const unsigned int cycle) const
{
DataOut<dim> data_out;
data_out.attach_dof_handler(dof_handler);
data_out.add_data_vector(solution, "solution");
data_out.build_patches();
std::ofstream output("solution-" + std::to_string(cycle) + ".vtk");
data_out.write_vtk(output);
}
template <int dim>
void LaplaceProblem<dim>::run()
{
for (unsigned int cycle = 0; cycle < 8; ++cycle)
{
std::cout << "Cycle " << cycle << std::endl;
if (cycle == 0)
{
GridGenerator::hyper_ball(triangulation);
triangulation.refine_global(2);
}
else
refine_grid();
std::cout << " Number of active cells: "
<< triangulation.n_active_cells() << std::endl;
setup_system();
assemble_system();
assemble_multigrid();
solve();
output_results(cycle);
}
}
} // namespace Step16
int main()
{
try
{
using namespace Step16;
LaplaceProblem<2> laplace_problem(1);
laplace_problem.run();
}
catch (std::exception &exc)
{
std::cerr << std::endl
<< std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Exception on processing: " << std::endl
<< exc.what() << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
catch (...)
{
std::cerr << std::endl
<< std::endl
<< "----------------------------------------------------"
<< std::endl;
std::cerr << "Unknown exception!" << std::endl
<< "Aborting!" << std::endl
<< "----------------------------------------------------"
<< std::endl;
return 1;
}
return 0;
}