deal.II version GIT relicensing-1805-g5fe121614e 2024-09-07 02:10:00+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Namespaces | Classes | Typedefs | Enumerations | Functions | Variables

Namespaces

namespace  BlockLinearOperatorImplementation
 
namespace  BlockVectorIterators
 
namespace  DataOutFacesImplementation
 
namespace  DataOutImplementation
 
namespace  DataOutRotationImplementation
 
namespace  DoFAccessorImplementation
 
namespace  DoFHandlerImplementation
 
namespace  FE_BDM
 
namespace  FE_DGPMonomial
 
namespace  FE_DGQ
 
namespace  FE_Enriched
 
namespace  FE_FaceQImplementation
 
namespace  FE_Nedelec
 
namespace  FE_PolyTensor
 
namespace  FE_Q
 
namespace  FE_Q_Base
 
namespace  FE_Q_Bubbles
 
namespace  FE_Q_Hierarchical
 
namespace  FEInterfaceViews
 
namespace  FEPointEvaluation
 
namespace  FEValuesImplementation
 
namespace  FEValuesViews
 
namespace  FilteredIteratorImplementation
 
namespace  FunctionParser
 
namespace  GrowingVectorMemoryImplementation
 
namespace  hp
 
namespace  LAPACKFullMatrixImplementation
 
namespace  LinearOperatorImplementation
 
namespace  MappingFEFieldImplementation
 
namespace  MappingFEImplementation
 
namespace  MappingManifoldImplementation
 
namespace  MappingQ1
 
namespace  MappingQImplementation
 
namespace  MatrixFreeFunctions
 
namespace  MatrixOutImplementation
 
namespace  MGTransfer
 
namespace  p4est
 
namespace  PackagedOperationImplementation
 
namespace  parallel
 
namespace  PointValueHistoryImplementation
 
namespace  PolynomialsRannacherTurekImplementation
 
namespace  QGaussChebyshev
 
namespace  QGaussLobatto
 
namespace  QGaussLobattoChebyshev
 
namespace  QGaussRadau
 
namespace  QGaussRadauChebyshev
 
namespace  QIteratedImplementation
 
namespace  QProjector
 
namespace  QRImplementation
 
namespace  SD
 
namespace  SolverGMRESImplementation
 
namespace  SolverIDRImplementation
 
namespace  SparseMatrixImplementation
 
namespace  SphericalManifold
 
namespace  SupportsOperation
 
namespace  SymmetricTensorAccessors
 
namespace  SymmetricTensorImplementation
 
namespace  TableBaseAccessors
 
namespace  TemplateConstraints
 
namespace  TensorProductManifoldImplementation
 
namespace  TensorProductMatrixSymmetricSum
 
namespace  TensorProductPolynomials
 
namespace  TimerImplementation
 
namespace  TriaAccessorImplementation
 
namespace  TriangulationImplementation
 
namespace  UtilitiesImplementation
 
namespace  VectorImplementation
 
namespace  VectorOperations
 

Classes

class  ActiveCellIterator
 
class  AlignedVectorCopyConstruct
 
class  AlignedVectorDefaultInitialize
 
class  AlignedVectorInitialize
 
class  AlignedVectorMoveConstruct
 
struct  argument_type
 
struct  argument_type< T(U)>
 
struct  CellAttachedData
 
class  CellAttachedDataSerializer
 
class  CellIDTranslator
 
struct  CellwiseInverseMassFactory
 
struct  CellwiseInverseMassMatrixImplBasic
 
struct  CellwiseInverseMassMatrixImplFlexible
 
struct  CellwiseInverseMassMatrixImplTransformFromQPoints
 
struct  CurlType
 
struct  CurlType< 1, NumberType >
 
struct  CurlType< 2, NumberType >
 
struct  CurlType< 3, NumberType >
 
struct  EigenvalueAlgorithmAdditionalData
 
struct  EigenvalueInformation
 
struct  ElementAccess
 
struct  ElementAccess< LinearAlgebra::TpetraWrappers::Vector< NumberType, MemorySpace > >
 
struct  EvaluatorSelector
 
struct  EvaluatorSelector< MatrixFreeFunctions::tensor_general, is_long >
 
struct  EvaluatorSelector< MatrixFreeFunctions::tensor_symmetric, false >
 
struct  EvaluatorSelector< MatrixFreeFunctions::tensor_symmetric, true >
 
struct  EvaluatorSelector< MatrixFreeFunctions::tensor_symmetric_collocation, is_long >
 
struct  EvaluatorSelector< MatrixFreeFunctions::tensor_symmetric_plus_dg0, false >
 
struct  EvaluatorSelector< MatrixFreeFunctions::tensor_symmetric_plus_dg0, true >
 
struct  EvaluatorSelector< MatrixFreeFunctions::truncated_tensor, is_long >
 
struct  EvaluatorTensorProduct
 
struct  EvaluatorTensorProduct< variant, dim, 0, 0, Number, Number2 >
 
struct  EvaluatorTensorProductAnisotropic
 
struct  FastEvaluationSupported
 
struct  FEEvaluationFactory
 
struct  FEEvaluationHangingNodesFactory
 
struct  FEEvaluationImpl
 
struct  FEEvaluationImpl< MatrixFreeFunctions::tensor_none, dim, fe_degree, n_q_points_1d, Number >
 
struct  FEEvaluationImpl< MatrixFreeFunctions::tensor_raviart_thomas, dim, fe_degree, n_q_points_1d, Number >
 
struct  FEEvaluationImplBasisChange
 
struct  FEEvaluationImplCollocation
 
struct  FEEvaluationImplHangingNodes
 
class  FEEvaluationImplHangingNodesRunner
 
class  FEEvaluationImplHangingNodesRunner< FEEvaluationImplHangingNodesRunnerTypes::scalar, dim, fe_degree, Number >
 
class  FEEvaluationImplHangingNodesRunner< FEEvaluationImplHangingNodesRunnerTypes::vectorized, dim, fe_degree, Number >
 
struct  FEEvaluationImplSelector
 
struct  FEEvaluationImplTransformToCollocation
 
struct  FEFaceEvaluationFactory
 
struct  FEFaceEvaluationGatherFactory
 
struct  FEFaceEvaluationImpl
 
struct  FEFaceEvaluationImplCollectFromFaceSelector
 
struct  FEFaceEvaluationImplEvaluateInFaceSelector
 
struct  FEFaceEvaluationImplEvaluateSelector
 
struct  FEFaceEvaluationImplGatherEvaluateSelector
 
struct  FEFaceEvaluationImplIntegrateInFaceSelector
 
struct  FEFaceEvaluationImplIntegrateScatterSelector
 
struct  FEFaceEvaluationImplIntegrateSelector
 
struct  FEFaceEvaluationImplProjectToFaceSelector
 
struct  FEFaceEvaluationImplRaviartThomas
 
struct  FEFaceNormalEvaluationImpl
 
struct  GenericDoFsPerObject
 
class  Helper
 
class  Helper< HelperType::constant, Number, VectorizationType, fe_degree, transpose >
 
class  Helper< HelperType::dynamic, Number, VectorizationType, fe_degree, transpose >
 
class  HelperBase
 
struct  is_explicitly_convertible
 
struct  MatrixSelector
 
struct  MatrixSelector< ::LinearAlgebra::TpetraWrappers::Vector< Number, MemorySpace > >
 
struct  MatrixSelector< LinearAlgebra::distributed::Vector< Number > >
 
struct  MatrixSelector<::LinearAlgebra::EpetraWrappers::Vector >
 
struct  MatrixSelector<::PETScWrappers::MPI::Vector >
 
struct  MatrixSelector<::TrilinosWrappers::MPI::Vector >
 
struct  MFWorkerInterface
 
class  NoPermutation
 
struct  NumberType
 
struct  NumberType< std::complex< T > >
 
struct  ParameterAcceptorCompare
 
struct  PrecomputedEvaluationData
 
class  PrecomputedEvaluationDataAccessor
 
struct  PrecomputedEvaluationDataView
 
struct  ProductTypeImpl
 
struct  ProductTypeImpl< adouble, adouble >
 
struct  ProductTypeImpl< adouble, adub >
 
struct  ProductTypeImpl< adouble, double >
 
struct  ProductTypeImpl< adouble, float >
 
struct  ProductTypeImpl< adtl::adouble, adtl::adouble >
 
struct  ProductTypeImpl< adtl::adouble, double >
 
struct  ProductTypeImpl< adtl::adouble, float >
 
struct  ProductTypeImpl< adub, adouble >
 
struct  ProductTypeImpl< adub, double >
 
struct  ProductTypeImpl< adub, float >
 
struct  ProductTypeImpl< Differentiation::SD::Expression, Differentiation::SD::Expression >
 
struct  ProductTypeImpl< Differentiation::SD::Expression, T >
 
struct  ProductTypeImpl< double, adouble >
 
struct  ProductTypeImpl< double, adtl::adouble >
 
struct  ProductTypeImpl< double, adub >
 
struct  ProductTypeImpl< double, Sacado::Fad::DFad< T > >
 
struct  ProductTypeImpl< double, Sacado::Rad::ADvar< T > >
 
struct  ProductTypeImpl< double, Sacado::Rad::ADvari< T > >
 
struct  ProductTypeImpl< double, std::complex< U > >
 
struct  ProductTypeImpl< float, adouble >
 
struct  ProductTypeImpl< float, adtl::adouble >
 
struct  ProductTypeImpl< float, adub >
 
struct  ProductTypeImpl< float, Sacado::Fad::DFad< T > >
 
struct  ProductTypeImpl< float, Sacado::Rad::ADvar< T > >
 
struct  ProductTypeImpl< float, Sacado::Rad::ADvari< T > >
 
struct  ProductTypeImpl< float, std::complex< U > >
 
struct  ProductTypeImpl< int, Sacado::Fad::DFad< T > >
 
struct  ProductTypeImpl< int, Sacado::Rad::ADvar< T > >
 
struct  ProductTypeImpl< int, Sacado::Rad::ADvari< T > >
 
struct  ProductTypeImpl< Sacado::Fad::DFad< T >, double >
 
struct  ProductTypeImpl< Sacado::Fad::DFad< T >, float >
 
struct  ProductTypeImpl< Sacado::Fad::DFad< T >, int >
 
struct  ProductTypeImpl< Sacado::Fad::DFad< T >, Sacado::Fad::DFad< U > >
 
struct  ProductTypeImpl< Sacado::Fad::Expr< T >, Sacado::Fad::Expr< U > >
 
struct  ProductTypeImpl< Sacado::Fad::Expr< T >, U >
 
struct  ProductTypeImpl< Sacado::Rad::ADvar< T >, double >
 
struct  ProductTypeImpl< Sacado::Rad::ADvar< T >, float >
 
struct  ProductTypeImpl< Sacado::Rad::ADvar< T >, int >
 
struct  ProductTypeImpl< Sacado::Rad::ADvar< T >, Sacado::Rad::ADvar< U > >
 
struct  ProductTypeImpl< Sacado::Rad::ADvar< T >, Sacado::Rad::ADvari< U > >
 
struct  ProductTypeImpl< Sacado::Rad::ADvari< T >, double >
 
struct  ProductTypeImpl< Sacado::Rad::ADvari< T >, float >
 
struct  ProductTypeImpl< Sacado::Rad::ADvari< T >, int >
 
struct  ProductTypeImpl< Sacado::Rad::ADvari< T >, Sacado::Rad::ADvar< U > >
 
struct  ProductTypeImpl< Sacado::Rad::ADvari< T >, Sacado::Rad::ADvari< U > >
 
struct  ProductTypeImpl< std::complex< adouble >, std::complex< adouble > >
 
struct  ProductTypeImpl< std::complex< adouble >, std::complex< adub > >
 
struct  ProductTypeImpl< std::complex< adouble >, std::complex< double > >
 
struct  ProductTypeImpl< std::complex< adouble >, std::complex< float > >
 
struct  ProductTypeImpl< std::complex< adtl::adouble >, std::complex< adtl::adouble > >
 
struct  ProductTypeImpl< std::complex< adtl::adouble >, std::complex< double > >
 
struct  ProductTypeImpl< std::complex< adtl::adouble >, std::complex< float > >
 
struct  ProductTypeImpl< std::complex< adub >, std::complex< adouble > >
 
struct  ProductTypeImpl< std::complex< double >, std::complex< adouble > >
 
struct  ProductTypeImpl< std::complex< double >, std::complex< adtl::adouble > >
 
struct  ProductTypeImpl< std::complex< float >, std::complex< adouble > >
 
struct  ProductTypeImpl< std::complex< float >, std::complex< adtl::adouble > >
 
struct  ProductTypeImpl< std::complex< T >, double >
 
struct  ProductTypeImpl< std::complex< T >, float >
 
struct  ProductTypeImpl< std::complex< T >, std::complex< T > >
 
struct  ProductTypeImpl< std::complex< T >, std::complex< U > >
 
struct  ProductTypeImpl< std::complex< T >, SymmetricTensor< rank, dim, std::complex< U > > >
 
struct  ProductTypeImpl< std::complex< T >, SymmetricTensor< rank, dim, U > >
 
struct  ProductTypeImpl< SymmetricTensor< rank, dim, std::complex< T > >, std::complex< U > >
 
struct  ProductTypeImpl< SymmetricTensor< rank, dim, T >, std::complex< U > >
 
struct  ProductTypeImpl< T, Differentiation::SD::Expression >
 
struct  ProductTypeImpl< T, Sacado::Fad::Expr< U > >
 
struct  ProductTypeNoPoint
 
struct  ProductTypeNoPoint< Point< dim, Number >, Number2 >
 
class  Rescaler
 
class  SubfaceCase
 
struct  SubfacePossibilities
 
struct  SubfacePossibilities< 0 >
 
struct  SubfacePossibilities< 1 >
 
struct  SubfacePossibilities< 2 >
 
struct  SubfacePossibilities< 3 >
 
struct  TableEntry
 
struct  Trait
 
struct  Trait< T1, VectorizationTypes::group >
 
struct  Trait< T1, VectorizationTypes::index >
 
struct  Trait< T1, VectorizationTypes::mask >
 
struct  Trait< T1, VectorizationTypes::sorted >
 
struct  VectorDistributorLocalToGlobal
 
struct  VectorizedArrayTrait
 
struct  VectorizedArrayTrait< VectorizedArray< T, width_ > >
 
struct  VectorizedArrayWidthSpecifier
 
struct  VectorizedArrayWidthSpecifier< double >
 
struct  VectorizedArrayWidthSpecifier< float >
 
struct  VectorReader
 
struct  VectorSetter
 

Typedefs

template<typename F >
using argument_type_t = typename argument_type< F >::type
 
template<typename T >
using has_block_t = decltype(std::declval< const T >().block(0))
 
template<typename T >
using has_n_blocks_t = decltype(std::declval< const T >().n_blocks())
 
template<typename T >
using set_ghost_state_t = decltype(std::declval< const T >().set_ghost_state(std::declval< bool >()))
 

Enumerations

enum class  EigenvalueAlgorithm { lanczos , power_iteration }
 
enum class  FEEvaluationImplHangingNodesRunnerTypes { scalar , vectorized }
 
enum class  VectorizationTypes { index , group , mask , sorted }
 
enum class  HelperType { constant , dynamic }
 
enum  EvaluatorVariant { evaluate_general , evaluate_symmetric , evaluate_evenodd , evaluate_symmetric_hierarchical }
 
enum class  EvaluatorQuantity { value , gradient , hessian }
 

Functions

template<int dim>
Point< dim+1 > create_higher_dim_point (const Point< dim > &point, const unsigned int component_in_dim_plus_1, const double coordinate_value)
 
void ensure_kokkos_initialized ()
 
internal::GenericDoFsPerObject expand (const unsigned int dim, const std::vector< unsigned int > &dofs_per_object, const ReferenceCell reference_cell)
 
constexpr ReferenceCell make_reference_cell_from_int (const std::uint8_t kind)
 
static ::ExceptionBaseExcNonMatchingReferenceCellTypes (ReferenceCell arg1, ReferenceCell arg2)
 
unsigned char combined_face_orientation (const bool face_orientation, const bool face_rotation, const bool face_flip)
 
std::tuple< bool, bool, boolsplit_face_orientation (const unsigned char combined_face_orientation)
 
template<typename MatrixType >
void reinit (MatrixBlock< MatrixType > &v, const BlockSparsityPattern &p)
 
template<typename number >
void reinit (MatrixBlock<::SparseMatrix< number > > &v, const BlockSparsityPattern &p)
 
template<int n_points_1d, int dim, typename Number , typename Number2 >
void evaluate_gradients_collocation (const MatrixFreeFunctions::UnivariateShapeData< Number2 > &shape, const Number *values, Number *gradients)
 
template<int n_points_1d, int dim, typename Number , typename Number2 >
void integrate_gradients_collocation (const MatrixFreeFunctions::UnivariateShapeData< Number2 > &shape, Number *values, const Number *gradients, const bool add_into_values_array)
 
template<int n_points_1d, int dim, typename Number >
void evaluate_hessians_collocation (const unsigned int n_components, FEEvaluationData< dim, Number, false > &fe_eval)
 
template<int n_q_points_1d, int dim, typename Number >
void integrate_hessians_collocation (const unsigned int n_components, FEEvaluationData< dim, Number, false > &fe_eval, const bool add_into_values_array)
 
template<int dim, typename Number >
void evaluate_hessians_slow (const unsigned int n_components, const Number *values_dofs, FEEvaluationData< dim, Number, false > &fe_eval)
 
template<int dim, typename Number >
void integrate_hessians_slow (const unsigned int n_components, const FEEvaluationData< dim, Number, false > &fe_eval, Number *values_dofs, const bool add_into_values_array)
 
template<typename VectorizedArrayType , typename Number2 >
void do_vectorized_read (const Number2 *src_ptr, VectorizedArrayType &dst)
 
template<typename Number , std::size_t width>
void do_vectorized_read (const Number *src_ptr, VectorizedArray< Number, width > &dst)
 
template<typename VectorizedArrayType , typename Number2 >
void do_vectorized_gather (const Number2 *src_ptr, const unsigned int *indices, VectorizedArrayType &dst)
 
template<typename Number , std::size_t width>
void do_vectorized_gather (const Number *src_ptr, const unsigned int *indices, VectorizedArray< Number, width > &dst)
 
template<typename VectorizedArrayType , typename Number2 >
void do_vectorized_add (const VectorizedArrayType src, Number2 *dst_ptr)
 
template<typename Number , std::size_t width>
void do_vectorized_add (const VectorizedArray< Number, width > src, Number *dst_ptr)
 
template<typename VectorizedArrayType , typename Number2 >
void do_vectorized_scatter_add (const VectorizedArrayType src, const unsigned int *indices, Number2 *dst_ptr)
 
template<typename Number , std::size_t width>
void do_vectorized_scatter_add (const VectorizedArray< Number, width > src, const unsigned int *indices, Number *dst_ptr)
 
template<typename Number >
void adjust_for_face_orientation (const unsigned int dim, const unsigned int n_components, const EvaluationFlags::EvaluationFlags flag, const unsigned int *orientation, const bool integrate, const std::size_t n_q_points, Number *tmp_values, Number *values_quad, Number *gradients_quad, Number *hessians_quad)
 
template<typename Number , typename VectorizedArrayType >
void adjust_for_face_orientation_per_lane (const unsigned int dim, const unsigned int n_components, const unsigned int v, const EvaluationFlags::EvaluationFlags flag, const unsigned int *orientation, const bool integrate, const std::size_t n_q_points, Number *tmp_values, VectorizedArrayType *values_quad, VectorizedArrayType *gradients_quad=nullptr, VectorizedArrayType *hessians_quad=nullptr)
 
template<int n_face_orientations, typename Processor , typename EvaluationData , const bool check_face_orientations = false>
void fe_face_evaluation_process_and_io (Processor &proc, const unsigned int n_components, const EvaluationFlags::EvaluationFlags evaluation_flag, typename Processor::Number2_ *global_vector_ptr, const std::vector< ArrayView< const typename Processor::Number2_ > > *sm_ptr, const EvaluationData &fe_eval, typename Processor::VectorizedArrayType_ *temp1)
 
template<int degree, typename EvaluatorType , typename... Args>
bool instantiation_helper_run (const unsigned int given_degree, const unsigned int n_q_points_1d, Args &...args)
 
template<int degree, typename EvaluatorType , typename... Args>
bool instantiation_helper_degree_run (const unsigned int given_degree, Args &...args)
 
static ::ExceptionBaseExcAccessToUninitializedField ()
 
static ::ExceptionBaseExcMatrixFreeAccessToUninitializedMappingField (std::string arg1)
 
template<EvaluatorVariant variant, EvaluatorQuantity quantity, int n_rows, int n_columns, int stride_in, int stride_out, bool transpose_matrix, bool add, typename Number , typename Number2 >
std::enable_if_t<(variant==evaluate_general), void > apply_matrix_vector_product (const Number2 *matrix, const Number *in, Number *out)
 
template<EvaluatorVariant variant, EvaluatorQuantity quantity, bool transpose_matrix, bool add, bool consider_strides, typename Number , typename Number2 >
std::enable_if_t<(variant==evaluate_general), void > apply_matrix_vector_product (const Number2 *matrix, const Number *in, Number *out, const int n_rows, const int n_columns, const int stride_in_given, const int stride_out_given)
 
template<EvaluatorVariant variant, EvaluatorQuantity quantity, int n_rows, int n_columns, int stride_in, int stride_out, bool transpose_matrix, bool add, typename Number , typename Number2 >
std::enable_if_t<(variant==evaluate_symmetric), void > apply_matrix_vector_product (const Number2 *matrix, const Number *in, Number *out)
 
template<EvaluatorVariant variant, EvaluatorQuantity quantity, int n_rows_static, int n_columns_static, int stride_in_static, int stride_out_static, bool transpose_matrix, bool add, typename Number , typename Number2 >
std::enable_if_t<(variant==evaluate_evenodd), void > apply_matrix_vector_product (const Number2 *DEAL_II_RESTRICT matrix, const Number *in, Number *out, int n_rows_runtime=0, int n_columns_runtime=0, int stride_in_runtime=0, int stride_out_runtime=0)
 
template<EvaluatorVariant variant, EvaluatorQuantity quantity, bool transpose_matrix, bool add, bool consider_strides, typename Number , typename Number2 >
std::enable_if_t<(variant==evaluate_evenodd), void > apply_matrix_vector_product (const Number2 *matrix, const Number *in, Number *out, int n_rows, int n_columns, int stride_in, int stride_out)
 
template<EvaluatorVariant variant, EvaluatorQuantity quantity, int n_rows, int n_columns, int stride_in, int stride_out, bool transpose_matrix, bool add, typename Number , typename Number2 >
std::enable_if_t<(variant==evaluate_symmetric_hierarchical), void > apply_matrix_vector_product (const Number2 *matrix, const Number *in, Number *out)
 
template<int n_rows_template, int stride_template, bool contract_onto_face, bool add, int max_derivative, typename Number , typename Number2 >
std::enable_if_t< contract_onto_face, void > interpolate_to_face (const Number2 *shape_values, const std::array< int, 2 > &n_blocks, const std::array< int, 2 > &steps, const Number *input, Number *DEAL_II_RESTRICT output, const int n_rows_runtime=0, const int stride_runtime=1)
 
constexpr bool use_collocation_evaluation (const unsigned int fe_degree, const unsigned int n_q_points_1d)
 
template<int n_rows_template, int stride_template, bool contract_onto_face, bool add, int max_derivative, typename Number , typename Number2 >
std::enable_if_t<!contract_onto_face, void > interpolate_to_face (const Number2 *shape_values, const std::array< int, 2 > &n_blocks, const std::array< int, 2 > &steps, const Number *input, Number *DEAL_II_RESTRICT output, const int n_rows_runtime=0, const int stride_runtime=1)
 
template<int dim, int n_points_1d_template, typename Number >
void weight_fe_q_dofs_by_entity (const Number *weights, const unsigned int n_components, const int n_points_1d_non_template, Number *data)
 
template<int dim, int n_points_1d_template, typename Number >
void weight_fe_q_dofs_by_entity_shifted (const Number *weights, const unsigned int n_components, const int n_points_1d_non_template, Number *data)
 
template<int dim, int n_points_1d_template, typename Number >
bool compute_weights_fe_q_dofs_by_entity (const Number *data, const unsigned int n_components, const int n_points_1d_non_template, Number *weights)
 
template<int dim, int n_points_1d_template, typename Number >
bool compute_weights_fe_q_dofs_by_entity_shifted (const Number *data, const unsigned int n_components, const int n_points_1d_non_template, Number *weights)
 
template<int dim, typename Number >
void compute_values_of_array (::ndarray< Number, 2, dim > *shapes, const std::vector< Polynomials::Polynomial< double > > &poly, const Point< dim, Number > &p, const unsigned int derivative=1)
 
template<typename Number >
void compute_values_of_array (::ndarray< Number, 2, 0 > *, const std::vector< Polynomials::Polynomial< double > > &, const Point< 0, Number > &, const unsigned int)
 
template<int dim, typename Number >
void compute_values_of_array_in_pairs (::ndarray< Number, 2, dim > *shapes, const std::vector< Polynomials::Polynomial< double > > &poly, const Point< dim, Number > &p0, const Point< dim, Number > &p1)
 
template<int dim, int length, typename Number2 , typename Number , int n_values = 1, bool do_renumber = true, int stride = 1>
std::array< typename ProductTypeNoPoint< Number, Number2 >::type, 2+n_values > do_interpolate_xy (const Number *values, const std::vector< unsigned int > &renumber, const ::ndarray< Number2, 2, dim > *shapes, const int n_shapes_runtime, int &i)
 
template<int dim, typename Number , typename Number2 , int n_values = 1, bool do_renumber = true, int stride = 1>
std::array< typename ProductTypeNoPoint< Number, Number2 >::type, dim+n_values > evaluate_tensor_product_value_and_gradient_shapes (const ::ndarray< Number2, 2, dim > *shapes, const int n_shapes, const Number *values, const std::vector< unsigned int > &renumber={})
 
template<int dim, typename Number , typename Number2 , int n_values = 1, int stride = 1>
std::array< typename ProductTypeNoPoint< Number, Number2 >::type, dim+n_values > evaluate_tensor_product_value_and_gradient_linear (const Number *values, const Point< dim, Number2 > &p)
 
template<int dim, typename Number , typename Number2 >
std::pair< typename ProductTypeNoPoint< Number, Number2 >::type, Tensor< 1, dim, typename ProductTypeNoPoint< Number, Number2 >::type > > evaluate_tensor_product_value_and_gradient (const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< dim, Number2 > &p, const bool d_linear=false, const std::vector< unsigned int > &renumber={})
 
template<int dim, int length, typename Number2 , typename Number , bool do_renumber = true, int stride = 1>
ProductTypeNoPoint< Number, Number2 >::type do_interpolate_xy_value (const Number *values, const std::vector< unsigned int > &renumber, const ::ndarray< Number2, 2, dim > *shapes, const int n_shapes_runtime, int &i)
 
template<int dim, typename Number , typename Number2 , bool do_renumber = true, int stride = 1>
ProductTypeNoPoint< Number, Number2 >::type evaluate_tensor_product_value_shapes (const ::ndarray< Number2, 2, dim > *shapes, const int n_shapes, const Number *values, const std::vector< unsigned int > &renumber={})
 
template<int dim, typename Number , typename Number2 , int stride = 1>
ProductTypeNoPoint< Number, Number2 >::type evaluate_tensor_product_value_linear (const Number *values, const Point< dim, Number2 > &p)
 
template<int dim, typename Number , typename Number2 >
ProductTypeNoPoint< Number, Number2 >::type evaluate_tensor_product_value (const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< dim, Number2 > &p, const bool d_linear=false, const std::vector< unsigned int > &renumber={})
 
template<int derivative_order, typename Number , typename Number2 >
Tensor< 1, 1, typename ProductTypeNoPoint< Number, Number2 >::type > evaluate_tensor_product_higher_derivatives (const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< 1, Number2 > &p, const std::vector< unsigned int > &renumber={})
 
template<int derivative_order, typename Number , typename Number2 >
Tensor< 1, derivative_order+1, typename ProductTypeNoPoint< Number, Number2 >::type > evaluate_tensor_product_higher_derivatives (const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< 2, Number2 > &p, const std::vector< unsigned int > &renumber={})
 
template<int derivative_order, typename Number , typename Number2 >
Tensor< 1,((derivative_order+1) *(derivative_order+2))/2, typename ProductTypeNoPoint< Number, Number2 >::type > evaluate_tensor_product_higher_derivatives (const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< 3, Number2 > &p, const std::vector< unsigned int > &renumber={})
 
template<int dim, typename Number , typename Number2 >
SymmetricTensor< 2, dim, typename ProductTypeNoPoint< Number, Number2 >::type > evaluate_tensor_product_hessian (const std::vector< Polynomials::Polynomial< double > > &poly, const ArrayView< const Number > &values, const Point< dim, Number2 > &p, const std::vector< unsigned int > &renumber={})
 
template<int dim, int length, typename Number2 , typename Number , bool add, int n_values = 1>
void do_apply_test_functions_xy (Number2 *values, const ::ndarray< Number, 2, dim > *shapes, const std::array< Number2, 2+n_values > &test_grads_value, const int n_shapes_runtime, int &i)
 
template<int dim, typename Number , typename Number2 , bool add, int n_values = 1>
void integrate_add_tensor_product_value_and_gradient_shapes (const ::ndarray< Number, 2, dim > *shapes, const int n_shapes, const Number2 *value, const Tensor< 1, dim, Number2 > &gradient, Number2 *values)
 
template<int dim, typename Number , typename Number2 , bool add, int n_values = 1>
void integrate_add_tensor_product_value_and_gradient_linear (const Number2 *value, const Tensor< 1, dim, Number2 > &gradient, Number2 *values, const Point< dim, Number > &p)
 
template<bool is_linear, int dim, typename Number , typename Number2 , int n_values = 1>
void integrate_tensor_product_value_and_gradient (const ::ndarray< Number, 2, dim > *shapes, const unsigned int n_shapes, const Number2 *value, const Tensor< 1, dim, Number2 > &gradient, Number2 *values, const Point< dim, Number > &p, const bool do_add)
 
template<int dim, int length, typename Number2 , typename Number , bool add>
void do_apply_test_functions_xy_value (Number2 *values, const ::ndarray< Number, 2, dim > *shapes, const Number2 &test_value, const int n_shapes_runtime, int &i)
 
template<int dim, typename Number , typename Number2 , bool add>
void integrate_add_tensor_product_value_shapes (const ::ndarray< Number, 2, dim > *shapes, const int n_shapes, const Number2 &value, Number2 *values)
 
template<int dim, typename Number , typename Number2 , bool add>
void integrate_add_tensor_product_value_linear (const Number2 &value, Number2 *values, const Point< dim, Number > &p)
 
template<bool is_linear, int dim, typename Number , typename Number2 >
void integrate_tensor_product_value (const ::ndarray< Number, 2, dim > *shapes, const unsigned int n_shapes, const Number2 &value, Number2 *values, const Point< dim, Number > &p, const bool do_add)
 
template<typename VectorType , std::enable_if_t< is_serial_vector_or_array< VectorType >::value, VectorType > * = nullptr>
VectorType::value_type vector_access (const VectorType &vec, const unsigned int entry)
 
template<typename VectorType , std::enable_if_t< is_serial_vector_or_array< VectorType >::value, VectorType > * = nullptr>
VectorType::value_type & vector_access (VectorType &vec, const unsigned int entry)
 
template<typename VectorType , std::enable_if_t< has_add_local_element< VectorType >, VectorType > * = nullptr>
void vector_access_add (VectorType &vec, const unsigned int entry, const typename VectorType::value_type &val)
 
template<typename VectorType , std::enable_if_t< has_add_local_element< VectorType >, VectorType > * = nullptr>
void vector_access_add_global (VectorType &vec, const types::global_dof_index entry, const typename VectorType::value_type &val)
 
template<typename VectorType , std::enable_if_t< has_set_local_element< VectorType >, VectorType > * = nullptr>
void vector_access_set (VectorType &vec, const unsigned int entry, const typename VectorType::value_type &val)
 
template<int dim, typename Number , typename VectorizedArrayType , typename VectorType , std::enable_if_t<!has_partitioners_are_compatible< VectorType >, VectorType > * = nullptr>
void check_vector_compatibility (const VectorType &vec, const MatrixFree< dim, Number, VectorizedArrayType > &matrix_free, const internal::MatrixFreeFunctions::DoFInfo &dof_info)
 
template<class DI >
bool is_active_iterator (const DI &)
 
template<typename AccessorType >
bool is_active_iterator (const TriaActiveIterator< AccessorType > &)
 
template<typename AccessorType >
bool is_active_iterator (const ::FilteredIterator< TriaActiveIterator< AccessorType > > &)
 
template<int dim, class DOFINFO , class A >
void assemble (const MeshWorker::DoFInfoBox< dim, DOFINFO > &dinfo, A *assembler)
 
template<int dim>
unsigned int get_degree (const std::vector< typename BarycentricPolynomials< dim >::PolyType > &polys)
 
template<typename Number >
std::enable_if_t<!std::is_unsigned_v< Number >, typename numbers::NumberTraits< Number >::real_type > get_abs (const Number a)
 
template<typename Number >
std::enable_if_t< std::is_unsigned_v< Number >, Number > get_abs (const Number a)
 
template<typename VectorType , std::enable_if_t< has_set_ghost_state< VectorType >, VectorType > * = nullptr>
void set_ghost_state (VectorType &vector, const bool ghosted)
 
template<int dim, int spacedim, bool lda, class OutputVector , typename number >
void set_dof_values (const DoFCellAccessor< dim, spacedim, lda > &cell, const Vector< number > &local_values, OutputVector &values, const bool perform_check)
 
template<int dim, int spacedim, bool lda, class OutputVector , typename number >
void process_by_interpolation (const DoFCellAccessor< dim, spacedim, lda > &cell, const Vector< number > &local_values, OutputVector &values, const types::fe_index fe_index_, const std::function< void(const DoFCellAccessor< dim, spacedim, lda > &cell, const Vector< number > &local_values, OutputVector &values)> &processor)
 
template<int dim, int spacedim>
std::string policy_to_string (const ::internal::DoFHandlerImplementation::Policy::PolicyBase< dim, spacedim > &policy)
 
unsigned int number_unique_entries (const std::vector< unsigned int > &vector)
 
unsigned int get_regularity_from_degree (const unsigned int fe_degree)
 
std::vector< unsigned intget_hermite_dpo_vector (const unsigned int dim, const unsigned int regularity)
 
template<int dim>
void hermite_hierarchic_to_lexicographic_numbering (const unsigned int regularity, std::vector< unsigned int > &h2l)
 
template<>
void hermite_hierarchic_to_lexicographic_numbering< 1 > (const unsigned int regularity, std::vector< unsigned int > &h2l)
 
template<>
void hermite_hierarchic_to_lexicographic_numbering< 2 > (const unsigned int regularity, std::vector< unsigned int > &h2l)
 
template<>
void hermite_hierarchic_to_lexicographic_numbering< 3 > (const unsigned int regularity, std::vector< unsigned int > &h2l)
 
template<int dim>
std::vector< unsigned inthermite_hierarchic_to_lexicographic_numbering (const unsigned int regularity)
 
template<int dim>
std::vector< unsigned inthermite_lexicographic_to_hierarchic_numbering (const unsigned int regularity)
 
template<int dim>
std::vector< unsigned inthermite_face_lexicographic_to_hierarchic_numbering (const unsigned int regularity)
 
template<int dim>
TensorProductPolynomials< dim > get_hermite_polynomials (const unsigned int fe_degree)
 
template<int dim, int spacedim = dim>
Table< 2, unsigned intsetup_primitive_offset_table (const FESystem< dim, spacedim > &fe, const unsigned int base_no)
 
template<int dim, int spacedim = dim>
std::vector< typename FESystem< dim, spacedim >::BaseOffsets > setup_nonprimitive_offset_table (const FESystem< dim, spacedim > &fe, const unsigned int base_no)
 
template<int dim, int spacedim = dim>
void copy_primitive_base_element_values (const FESystem< dim, spacedim > &fe, const unsigned int base_no, const UpdateFlags base_flags, const Table< 2, unsigned int > &base_to_system_table, const FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &base_data, FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data)
 
template<int dim, int spacedim = dim>
void copy_nonprimitive_base_element_values (const FESystem< dim, spacedim > &fe, const unsigned int base_no, const unsigned int n_q_points, const UpdateFlags base_flags, const std::vector< typename FESystem< dim, spacedim >::BaseOffsets > &offsets, const FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &base_data, FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &output_data)
 
template<int dim, int spacedim>
std::vector< unsigned intmake_shape_function_to_row_table (const FiniteElement< dim, spacedim > &fe)
 
template<typename Number , typename Number2 >
void do_function_values (const ArrayView< Number2 > &dof_values, const ::Table< 2, double > &shape_values, std::vector< Number > &values)
 
template<int dim, int spacedim, typename VectorType >
void do_function_values (const ArrayView< typename VectorType::value_type > &dof_values, const ::Table< 2, double > &shape_values, const FiniteElement< dim, spacedim > &fe, const std::vector< unsigned int > &shape_function_to_row_table, ArrayView< VectorType > values, const bool quadrature_points_fastest=false, const unsigned int component_multiple=1)
 
template<int order, int spacedim, typename Number >
void do_function_derivatives (const ArrayView< Number > &dof_values, const ::Table< 2, Tensor< order, spacedim > > &shape_derivatives, std::vector< Tensor< order, spacedim, Number > > &derivatives)
 
template<int order, int dim, int spacedim, typename Number >
void do_function_derivatives (const ArrayView< Number > &dof_values, const ::Table< 2, Tensor< order, spacedim > > &shape_derivatives, const FiniteElement< dim, spacedim > &fe, const std::vector< unsigned int > &shape_function_to_row_table, ArrayView< std::vector< Tensor< order, spacedim, Number > > > derivatives, const bool quadrature_points_fastest=false, const unsigned int component_multiple=1)
 
template<int spacedim, typename Number , typename Number2 >
void do_function_laplacians (const ArrayView< Number2 > &dof_values, const ::Table< 2, Tensor< 2, spacedim > > &shape_hessians, std::vector< Number > &laplacians)
 
template<int dim, int spacedim, typename VectorType , typename Number >
void do_function_laplacians (const ArrayView< Number > &dof_values, const ::Table< 2, Tensor< 2, spacedim > > &shape_hessians, const FiniteElement< dim, spacedim > &fe, const std::vector< unsigned int > &shape_function_to_row_table, std::vector< VectorType > &laplacians, const bool quadrature_points_fastest=false, const unsigned int component_multiple=1)
 
Tensor< 1, 3 > apply_exponential_map (const Tensor< 1, 3 > &u, const Tensor< 1, 3 > &dir)
 
Tensor< 1, 3 > projected_direction (const Tensor< 1, 3 > &u, const Tensor< 1, 3 > &v)
 
template<int spacedim>
Point< spacedim > compute_normal (const Tensor< 1, spacedim > &, bool=false)
 
Point< 3 > compute_normal (const Tensor< 1, 3 > &vector, bool normalize=false)
 

Variables

bool dealii_initialized_kokkos = false
 
static const constexpr ::ndarray< unsigned int, 6, 2 > wedge_table_1
 
static const constexpr ::ndarray< unsigned int, 18, 2 > wedge_table_2
 
template<template< class... > class Op, class... Args>
constexpr bool is_supported_operation
 
template<typename T >
constexpr bool has_block = internal::is_supported_operation<has_block_t, T>
 
template<typename T >
constexpr bool has_n_blocks
 
template<typename T >
constexpr bool is_block_vector = has_block<T> && has_n_blocks<T>
 
template<typename VectorType >
constexpr bool is_dealii_vector
 
template<typename T >
constexpr bool has_set_ghost_state
 
static constexpr double invalid_pull_back_coordinate = 20.0
 

Detailed Description

This namespace defines the copy and set functions used in AlignedVector. These functions operate in parallel when there are enough elements in the vector.

Typedef Documentation

◆ argument_type_t

template<typename F >
using internal::argument_type_t = typedef typename argument_type<F>::type

Definition at line 2049 of file exceptions.h.

◆ has_block_t

template<typename T >
using internal::has_block_t = typedef decltype(std::declval<const T>().block(0))

Definition at line 49 of file block_vector_base.h.

◆ has_n_blocks_t

template<typename T >
using internal::has_n_blocks_t = typedef decltype(std::declval<const T>().n_blocks())

Definition at line 55 of file block_vector_base.h.

◆ set_ghost_state_t

template<typename T >
using internal::set_ghost_state_t = typedef decltype(std::declval<const T>().set_ghost_state(std::declval<bool>()))

Helper functions that call set_ghost_state() if the vector supports this operation.

Definition at line 94 of file dof_accessor_set.cc.

Enumeration Type Documentation

◆ EigenvalueAlgorithm

enum class internal::EigenvalueAlgorithm
strong

An enum to define the available types of eigenvalue estimation algorithms.

Enumerator
lanczos 

This option runs the conjugate gradient solver and computes an eigenvalue estimation from the underlying Lanczos space. This only works for symmetric positive definite matrices.

power_iteration 

This option runs a power iteration to estimate the largest eigenvalue. This algorithm also works for non-symmetric matrices, but typically gives less accurate estimates than the option 'lanczos' for the same number of iterations because it does not take the relation between vectors in the iterations into account (roughly speaking the off-diagonal entries in the tri-diagonal matrix of the Lanczos iteration).

Definition at line 67 of file precondition.h.

◆ FEEvaluationImplHangingNodesRunnerTypes

Enumerator
scalar 
vectorized 

Definition at line 40 of file evaluation_kernels_hanging_nodes.h.

◆ VectorizationTypes

enum class internal::VectorizationTypes
strong

Helper enum to specify the type of vectorization for FEEvaluationImplHangingNodesRunnerTypes::scalar.

Enumerator
index 

Process cell by cell.

group 

Process cells with the same refinement configuration together.

mask 

Like index but without access to individual lanes and instead use masks with a single entry with the value one.

sorted 

Assume that all lanes have the same refinement configuration.

Definition at line 52 of file evaluation_kernels_hanging_nodes.h.

◆ HelperType

enum class internal::HelperType
strong

Helper enum to specify which Helper implementation should be used.

Enumerator
constant 

Compute the start indices of faces and edges based on the template argument fe_degree.

dynamic 

Compute the start indices of faces and edges based on the fe_degree passed to the constructor (to be used if the template argument is -1).

Definition at line 1109 of file evaluation_kernels_hanging_nodes.h.

◆ EvaluatorVariant

In this namespace, the evaluator routines that evaluate the tensor products are implemented.

Enumerator
evaluate_general 

Do not use anything more than the tensor product structure of the finite element.

evaluate_symmetric 

Perform evaluation by exploiting symmetry in the finite element: i.e., skip some computations by utilizing the symmetry in the shape functions and quadrature points.

evaluate_evenodd 

Use symmetry to apply the operator to even and odd parts of the input vector separately: see the documentation of the EvaluatorTensorProduct specialization for more information.

evaluate_symmetric_hierarchical 

Use symmetry in Legendre and similar polynomial spaces where the shape functions with even number are symmetric about the center of the quadrature points (think about even polynomial degrees) and the shape functions with odd number are anti-symmetric about the center of the quadrature points (think about odd polynomial degrees). This allows to use a strategy similar to the even-odd technique but without separate coefficient arrays. See the documentation of the EvaluatorTensorProduct specialization for more information.

Definition at line 37 of file tensor_product_kernels.h.

◆ EvaluatorQuantity

enum class internal::EvaluatorQuantity
strong

Determine which quantity should be computed via the tensor product kernels.

Enumerator
value 

Evaluate/integrate by shape functions.

gradient 

Evaluate/integrate by gradients of the shape functions.

hessian 

Evaluate/integrate by hessians of the shape functions.

Definition at line 74 of file tensor_product_kernels.h.

Function Documentation

◆ create_higher_dim_point()

template<int dim>
Point< dim+1 > internal::create_higher_dim_point ( const Point< dim > &  point,
const unsigned int  component_in_dim_plus_1,
const double  coordinate_value 
)
private

Creates a (dim + 1)-dimensional point by copying over the coordinates of the incoming dim-dimensional point and setting the "missing" (dim + 1)-dimensional component to the incoming coordinate value.

For example, given the input \(\{(x, y), 2, z \}\) this function creates the point \((x, y, z)\).

The coordinates of the dim-dimensional point are written to the coordinates of the (dim + 1)-dimensional point in the order of the convention given by the function coordinate_to_one_dim_higher. Thus, the order of coordinates on the lower-dimensional point are not preserved: \(\{(z, x), 1, y \}\) creates the point \((x, y, z)\).

Definition at line 23 of file function_restriction.cc.

◆ ensure_kokkos_initialized()

void internal::ensure_kokkos_initialized ( )

Makes sure that Kokkos is initialized. Sets dealii_initialized_kokkos.

Definition at line 30 of file kokkos.cc.

◆ expand()

internal::GenericDoFsPerObject internal::expand ( const unsigned int  dim,
const std::vector< unsigned int > &  dofs_per_object,
const ReferenceCell  reference_cell 
)

Utility function to convert "dofs per object" information of a dim dimensional reference cell reference_cell.

Definition at line 24 of file fe_data.cc.

◆ make_reference_cell_from_int()

constexpr ReferenceCell internal::make_reference_cell_from_int ( const std::uint8_t  kind)
inlineconstexpr

A helper function to create a ReferenceCell object from an integer. ReferenceCell objects are "singletons" (actually, "multitons" – there are multiple, but they are only a handful and these are all that can be used). What is then necessary is to have a way to create these with their internal id to distinguish the few possible ones in existence. We could do this via a public constructor of ReferenceCell, but that would allow users to create ones outside the range we envision, and we don't want to do that. Rather, the constructor that takes an integer is made private but we have this one function in an internal namespace that is a friend of the class and can be used to create the objects.

Definition at line 1056 of file reference_cell.h.

◆ combined_face_orientation()

unsigned char internal::combined_face_orientation ( const bool  face_orientation,
const bool  face_rotation,
const bool  face_flip 
)
inline

Combine orientation flags.

Definition at line 32 of file tria_orientation.h.

◆ split_face_orientation()

std::tuple< bool, bool, bool > internal::split_face_orientation ( const unsigned char  combined_face_orientation)
inline

Split up a combined orientation flag: orientation flag, rotation flag, flip flag.

Definition at line 45 of file tria_orientation.h.

◆ reinit() [1/2]

template<typename MatrixType >
void internal::reinit ( MatrixBlock< MatrixType > &  v,
const BlockSparsityPattern p 
)

Definition at line 617 of file matrix_block.h.

◆ reinit() [2/2]

template<typename number >
void internal::reinit ( MatrixBlock<::SparseMatrix< number > > &  v,
const BlockSparsityPattern p 
)

Definition at line 626 of file matrix_block.h.

◆ evaluate_gradients_collocation()

template<int n_points_1d, int dim, typename Number , typename Number2 >
void internal::evaluate_gradients_collocation ( const MatrixFreeFunctions::UnivariateShapeData< Number2 > &  shape,
const Number *  values,
Number *  gradients 
)
inline

Internal function that evaluates the gradients of finite element functions represented by bases in the collocation space, used by FEEvaluationImplCollocation and FEEvaluationImplTransformToCollocation. The evaluation strategy uses sum factorization with the even-odd optimization and fixed loop bounds.

Definition at line 1162 of file evaluation_kernels.h.

◆ integrate_gradients_collocation()

template<int n_points_1d, int dim, typename Number , typename Number2 >
void internal::integrate_gradients_collocation ( const MatrixFreeFunctions::UnivariateShapeData< Number2 > &  shape,
Number *  values,
const Number *  gradients,
const bool  add_into_values_array 
)
inline

Internal function that multiplies by the gradients of test functions and sums over quadrature points for function representations in the collocation space, used by FEEvaluationImplCollocation and FEEvaluationImplTransformToCollocation. The evaluation strategy uses sum factorization with the even-odd optimization and fixed loop bounds.

Definition at line 1216 of file evaluation_kernels.h.

◆ evaluate_hessians_collocation()

template<int n_points_1d, int dim, typename Number >
void internal::evaluate_hessians_collocation ( const unsigned int  n_components,
FEEvaluationData< dim, Number, false > &  fe_eval 
)
inline

Internal function that evaluates the Hessians of finite element functions represented by bases in the collocation space, used by FEEvaluationImplSelector. The evaluation strategy uses sum factorization with fixed loop bounds.

Definition at line 1279 of file evaluation_kernels.h.

◆ integrate_hessians_collocation()

template<int n_q_points_1d, int dim, typename Number >
void internal::integrate_hessians_collocation ( const unsigned int  n_components,
FEEvaluationData< dim, Number, false > &  fe_eval,
const bool  add_into_values_array 
)
inline

Internal function that multiplies by the Hessians of test functions and sums over quadrature points for function representations in the collocation space, used by FEEvaluationImplSelector. The evaluation strategy uses sum factorization with fixed loop bounds.

Definition at line 1352 of file evaluation_kernels.h.

◆ evaluate_hessians_slow()

template<int dim, typename Number >
void internal::evaluate_hessians_slow ( const unsigned int  n_components,
const Number *  values_dofs,
FEEvaluationData< dim, Number, false > &  fe_eval 
)

Internal function to evaluate the Hessians of finite element functions in the non-collocation setting as a fall-back. The evaluation strategy uses sum factorization with run-time loop bounds and is thus slower than the collocation case, but it is not as widely used and thus uncritical.

Definition at line 1429 of file evaluation_kernels.h.

◆ integrate_hessians_slow()

template<int dim, typename Number >
void internal::integrate_hessians_slow ( const unsigned int  n_components,
const FEEvaluationData< dim, Number, false > &  fe_eval,
Number *  values_dofs,
const bool  add_into_values_array 
)

Internal function to multiply by the Hessians of the test functions and integrate in the non-collocation setting as a fall-back. The evaluation strategy uses sum factorization with run-time loop bounds and is thus slower than the collocation case, but it is not as widely used and thus uncritical.

Definition at line 1523 of file evaluation_kernels.h.

◆ do_vectorized_read() [1/2]

template<typename VectorizedArrayType , typename Number2 >
void internal::do_vectorized_read ( const Number2 *  src_ptr,
VectorizedArrayType &  dst 
)

Definition at line 1212 of file evaluation_kernels_face.h.

◆ do_vectorized_read() [2/2]

template<typename Number , std::size_t width>
void internal::do_vectorized_read ( const Number *  src_ptr,
VectorizedArray< Number, width > &  dst 
)

Definition at line 1224 of file evaluation_kernels_face.h.

◆ do_vectorized_gather() [1/2]

template<typename VectorizedArrayType , typename Number2 >
void internal::do_vectorized_gather ( const Number2 *  src_ptr,
const unsigned int indices,
VectorizedArrayType &  dst 
)

Definition at line 1234 of file evaluation_kernels_face.h.

◆ do_vectorized_gather() [2/2]

template<typename Number , std::size_t width>
void internal::do_vectorized_gather ( const Number *  src_ptr,
const unsigned int indices,
VectorizedArray< Number, width > &  dst 
)

Definition at line 1248 of file evaluation_kernels_face.h.

◆ do_vectorized_add() [1/2]

template<typename VectorizedArrayType , typename Number2 >
void internal::do_vectorized_add ( const VectorizedArrayType  src,
Number2 *  dst_ptr 
)

Definition at line 1260 of file evaluation_kernels_face.h.

◆ do_vectorized_add() [2/2]

template<typename Number , std::size_t width>
void internal::do_vectorized_add ( const VectorizedArray< Number, width >  src,
Number *  dst_ptr 
)

Definition at line 1272 of file evaluation_kernels_face.h.

◆ do_vectorized_scatter_add() [1/2]

template<typename VectorizedArrayType , typename Number2 >
void internal::do_vectorized_scatter_add ( const VectorizedArrayType  src,
const unsigned int indices,
Number2 *  dst_ptr 
)

Definition at line 1284 of file evaluation_kernels_face.h.

◆ do_vectorized_scatter_add() [2/2]

template<typename Number , std::size_t width>
void internal::do_vectorized_scatter_add ( const VectorizedArray< Number, width >  src,
const unsigned int indices,
Number *  dst_ptr 
)

Definition at line 1298 of file evaluation_kernels_face.h.

◆ adjust_for_face_orientation()

template<typename Number >
void internal::adjust_for_face_orientation ( const unsigned int  dim,
const unsigned int  n_components,
const EvaluationFlags::EvaluationFlags  flag,
const unsigned int orientation,
const bool  integrate,
const std::size_t  n_q_points,
Number *  tmp_values,
Number *  values_quad,
Number *  gradients_quad,
Number *  hessians_quad 
)

Definition at line 1316 of file evaluation_kernels_face.h.

◆ adjust_for_face_orientation_per_lane()

template<typename Number , typename VectorizedArrayType >
void internal::adjust_for_face_orientation_per_lane ( const unsigned int  dim,
const unsigned int  n_components,
const unsigned int  v,
const EvaluationFlags::EvaluationFlags  flag,
const unsigned int orientation,
const bool  integrate,
const std::size_t  n_q_points,
Number *  tmp_values,
VectorizedArrayType *  values_quad,
VectorizedArrayType *  gradients_quad = nullptr,
VectorizedArrayType *  hessians_quad = nullptr 
)

Definition at line 1379 of file evaluation_kernels_face.h.

◆ fe_face_evaluation_process_and_io()

template<int n_face_orientations, typename Processor , typename EvaluationData , const bool check_face_orientations = false>
void internal::fe_face_evaluation_process_and_io ( Processor &  proc,
const unsigned int  n_components,
const EvaluationFlags::EvaluationFlags  evaluation_flag,
typename Processor::Number2_ *  global_vector_ptr,
const std::vector< ArrayView< const typename Processor::Number2_ > > *  sm_ptr,
const EvaluationData &  fe_eval,
typename Processor::VectorizedArrayType_ *  temp1 
)

Definition at line 2304 of file evaluation_kernels_face.h.

◆ instantiation_helper_run()

template<int degree, typename EvaluatorType , typename... Args>
bool internal::instantiation_helper_run ( const unsigned int  given_degree,
const unsigned int  n_q_points_1d,
Args &...  args 
)

Definition at line 47 of file evaluation_template_factory_internal.h.

◆ instantiation_helper_degree_run()

template<int degree, typename EvaluatorType , typename... Args>
bool internal::instantiation_helper_degree_run ( const unsigned int  given_degree,
Args &...  args 
)

Definition at line 79 of file evaluation_template_factory_internal.h.

◆ apply_matrix_vector_product() [1/6]

template<EvaluatorVariant variant, EvaluatorQuantity quantity, int n_rows, int n_columns, int stride_in, int stride_out, bool transpose_matrix, bool add, typename Number , typename Number2 >
std::enable_if_t<(variant==evaluate_general), void > internal::apply_matrix_vector_product ( const Number2 *  matrix,
const Number *  in,
Number *  out 
)

One-dimensional kernel for use by the generic tensor product interpolation as provided by the class EvaluatorTensorProduct, implementing a matrix-vector product along this dimension, controlled by the number of rows and columns and the stride in the input and output arrays, which are embedded into some lexicographic ordering of unknowns in a tensor-product arrangement.

Besides this generic function for templated loop lengths, there are several specializations of this class to account for run-time matrix sizes as well as some symmetries that reduce the data access or arithmetic operations. The specializations are technically realized by conditional function overloading with std::enable_if_t based on the first template parameter.

Definition at line 118 of file tensor_product_kernels.h.

◆ apply_matrix_vector_product() [2/6]

template<EvaluatorVariant variant, EvaluatorQuantity quantity, bool transpose_matrix, bool add, bool consider_strides, typename Number , typename Number2 >
std::enable_if_t<(variant==evaluate_general), void > internal::apply_matrix_vector_product ( const Number2 *  matrix,
const Number *  in,
Number *  out,
const int  n_rows,
const int  n_columns,
const int  stride_in_given,
const int  stride_out_given 
)

Specialization of the matrix-vector kernel for run-time loop bounds in the generic evaluator.

Definition at line 200 of file tensor_product_kernels.h.

◆ apply_matrix_vector_product() [3/6]

template<EvaluatorVariant variant, EvaluatorQuantity quantity, int n_rows, int n_columns, int stride_in, int stride_out, bool transpose_matrix, bool add, typename Number , typename Number2 >
std::enable_if_t<(variant==evaluate_symmetric), void > internal::apply_matrix_vector_product ( const Number2 *  matrix,
const Number *  in,
Number *  out 
)

Internal evaluator specialized for "symmetric" finite elements, i.e., when the shape functions and quadrature points are symmetric about the middle point, making the matrix entries the same when starting to read in the (1,1) entry forward compared to the (N,N) entry backward.

Definition at line 474 of file tensor_product_kernels.h.

◆ apply_matrix_vector_product() [4/6]

template<EvaluatorVariant variant, EvaluatorQuantity quantity, int n_rows_static, int n_columns_static, int stride_in_static, int stride_out_static, bool transpose_matrix, bool add, typename Number , typename Number2 >
std::enable_if_t<(variant==evaluate_evenodd), void > internal::apply_matrix_vector_product ( const Number2 *DEAL_II_RESTRICT  matrix,
const Number *  in,
Number *  out,
int  n_rows_runtime = 0,
int  n_columns_runtime = 0,
int  stride_in_runtime = 0,
int  stride_out_runtime = 0 
)

Internal evaluator specialized for "symmetric" finite elements in the evenodd matrix format.

This function implements a different approach to the symmetric case for values, gradients, and Hessians as in the above matrices: It is possible to reduce the cost per dimension from N^2 to N^2/2, where N is the number of 1d dofs (there are only N^2/2 different entries in the shape matrix, so this is plausible). The approach is based on the idea of applying the operator on the even and odd part of the input vectors separately, given that the basis of shape functions evaluated at quadrature points is symmetric. This method is presented e.g. in the book "Implementing Spectral Methods for Partial Differential Equations" by David A. Kopriva, Springer, 2009, section 3.5.3 (Even-Odd-Decomposition). Even though the experiments in the book say that the method is not efficient for N<20, it is more efficient in the context where the loop bounds are compile-time constants (templates).

Definition at line 877 of file tensor_product_kernels.h.

◆ apply_matrix_vector_product() [5/6]

template<EvaluatorVariant variant, EvaluatorQuantity quantity, bool transpose_matrix, bool add, bool consider_strides, typename Number , typename Number2 >
std::enable_if_t<(variant==evaluate_evenodd), void > internal::apply_matrix_vector_product ( const Number2 *  matrix,
const Number *  in,
Number *  out,
int  n_rows,
int  n_columns,
int  stride_in,
int  stride_out 
)

Internal evaluator specialized for "symmetric" finite elements in the evenodd matrix format with run-time bounds.

Definition at line 1064 of file tensor_product_kernels.h.

◆ apply_matrix_vector_product() [6/6]

template<EvaluatorVariant variant, EvaluatorQuantity quantity, int n_rows, int n_columns, int stride_in, int stride_out, bool transpose_matrix, bool add, typename Number , typename Number2 >
std::enable_if_t<(variant==evaluate_symmetric_hierarchical), void > internal::apply_matrix_vector_product ( const Number2 *  matrix,
const Number *  in,
Number *  out 
)

Internal evaluator specialized for "symmetric" finite elements in the symmetric_hierarchical matrix format.

This class implements an approach similar to the even-odd decomposition but with a different type of symmetry. In this case, we assume that a single shape function already shows the symmetry over the quadrature points, rather than the complete basis that is considered in the even-odd case. In particular, we assume that the shape functions are ordered as in the Legendre basis, with symmetric shape functions in the even slots (rows of the values array) and point-symmetric in the odd slots. Like the even-odd decomposition, the number of operations are N^2/2 rather than N^2 FMAs (fused multiply-add), where N is the number of 1d dofs. The difference is in the way the input and output quantities are symmetrized.

Definition at line 1111 of file tensor_product_kernels.h.

◆ interpolate_to_face() [1/2]

template<int n_rows_template, int stride_template, bool contract_onto_face, bool add, int max_derivative, typename Number , typename Number2 >
std::enable_if_t< contract_onto_face, void > internal::interpolate_to_face ( const Number2 *  shape_values,
const std::array< int, 2 > &  n_blocks,
const std::array< int, 2 > &  steps,
const Number *  input,
Number *DEAL_II_RESTRICT  output,
const int  n_rows_runtime = 0,
const int  stride_runtime = 1 
)
inline

This function applies the tensor product operation to produce face values from cell values. The algorithm involved here can be interpreted as the first sweep in sum factorization, reducing the dimensionality of the data set from dim-dimensional cell values to (dim-1)-dimensional face values. This step is always done before we evaluate within the face, as it reduces the length of the loops for the successive steps.

Template Parameters
n_rows_templateThe number of entries within the interpolation, typically equal to the polynomial degree plus one, if known at compile time, otherwise n_rows_runtime is used.
stride_templateThe stride between successive entries in the one-dimensional operation of sum factorization, if known at compile time, otherwise stride_runtime is used.
contract_onto_faceIf true, the input vector is of size n_rows^dim and interpolation into n_rows^(dim-1) points is performed. This is a typical scenario in FEFaceEvaluation::evaluate() calls. If false, data from n_rows^(dim-1) points is expanded into the n_rows^dim points of the higher-dimensional data array. Derivatives in the case contract_onto_face==false are summed together.
addIf true, the result is added to the output vector, else the computed values overwrite the content in the output.
max_derivativeSets the number of derivatives that should be computed. 0 means only values, 1 means values and first derivatives, 2 up to second derivates. Note that all the derivatives access the data in shape_values passed to the constructor of the class.
Parameters
shape_valuesAddress of the interpolation matrix.
n_blocksNumber of interpolation layers used along the up to two dimensions tangential to the interpolation direction.
stepsIncrements in the input array from one step to the next, varied in conjunction with the stride_template variable: We increment by stride_template along the 1d interpolation, and then increment by steps when passing from one line to the next.
inputAddress of the input data vector.
outputAddress of the output data vector.
n_rows_runtimeAlternative number of rows to be used if the variable n_rows_template is 0, enabling a run-time path.
stride_runtimeAlternative number for the stride to be used if the variable n_rows_template is 0.

Definition at line 2079 of file tensor_product_kernels.h.

◆ use_collocation_evaluation()

constexpr bool internal::use_collocation_evaluation ( const unsigned int  fe_degree,
const unsigned int  n_q_points_1d 
)
constexpr

Helper function to specify whether a transformation to collocation should be used: It should give correct results (first condition), we need to be able to initialize the fields in shape_info.templates.h from the polynomials (second condition), and it should be the most efficient choice in terms of operation counts (third condition).

Definition at line 2147 of file tensor_product_kernels.h.

◆ interpolate_to_face() [2/2]

template<int n_rows_template, int stride_template, bool contract_onto_face, bool add, int max_derivative, typename Number , typename Number2 >
std::enable_if_t<!contract_onto_face, void > internal::interpolate_to_face ( const Number2 *  shape_values,
const std::array< int, 2 > &  n_blocks,
const std::array< int, 2 > &  steps,
const Number *  input,
Number *DEAL_II_RESTRICT  output,
const int  n_rows_runtime = 0,
const int  stride_runtime = 1 
)
inline

This function performs the opposite operation to the interpolate_to_face function, done as the last step in sum factorization to embed face values and gradients back to values on all degrees of freedom of the cell.

Definition at line 2169 of file tensor_product_kernels.h.

◆ weight_fe_q_dofs_by_entity()

template<int dim, int n_points_1d_template, typename Number >
void internal::weight_fe_q_dofs_by_entity ( const Number *  weights,
const unsigned int  n_components,
const int  n_points_1d_non_template,
Number *  data 
)
inline

Definition at line 2217 of file tensor_product_kernels.h.

◆ weight_fe_q_dofs_by_entity_shifted()

template<int dim, int n_points_1d_template, typename Number >
void internal::weight_fe_q_dofs_by_entity_shifted ( const Number *  weights,
const unsigned int  n_components,
const int  n_points_1d_non_template,
Number *  data 
)
inline

Definition at line 2255 of file tensor_product_kernels.h.

◆ compute_weights_fe_q_dofs_by_entity()

template<int dim, int n_points_1d_template, typename Number >
bool internal::compute_weights_fe_q_dofs_by_entity ( const Number *  data,
const unsigned int  n_components,
const int  n_points_1d_non_template,
Number *  weights 
)
inline

Definition at line 2302 of file tensor_product_kernels.h.

◆ compute_weights_fe_q_dofs_by_entity_shifted()

template<int dim, int n_points_1d_template, typename Number >
bool internal::compute_weights_fe_q_dofs_by_entity_shifted ( const Number *  data,
const unsigned int  n_components,
const int  n_points_1d_non_template,
Number *  weights 
)
inline

Definition at line 2363 of file tensor_product_kernels.h.

◆ compute_values_of_array() [1/2]

template<int dim, typename Number >
void internal::compute_values_of_array ( ::ndarray< Number, 2, dim > *  shapes,
const std::vector< Polynomials::Polynomial< double > > &  poly,
const Point< dim, Number > &  p,
const unsigned int  derivative = 1 
)
inline

Compute the values and derivatives of the 1d polynomials poly at the specified point p and store them in shapes.

Definition at line 60 of file tensor_product_point_kernels.h.

◆ compute_values_of_array() [2/2]

template<typename Number >
void internal::compute_values_of_array ( ::ndarray< Number, 2, 0 > *  ,
const std::vector< Polynomials::Polynomial< double > > &  ,
const Point< 0, Number > &  ,
const unsigned int   
)
inline

Specialization of above function for dim = 0. Should not be called.

Definition at line 83 of file tensor_product_point_kernels.h.

◆ compute_values_of_array_in_pairs()

template<int dim, typename Number >
void internal::compute_values_of_array_in_pairs ( ::ndarray< Number, 2, dim > *  shapes,
const std::vector< Polynomials::Polynomial< double > > &  poly,
const Point< dim, Number > &  p0,
const Point< dim, Number > &  p1 
)
inline

Evaluate the 1d polynomials poly at the two specified points p0 and p1 and store them in shapes. This function can be used as a more efficient alternative to the compute_values_of_array() function, because of reduced overhead when querying the polynomials (which usually have loop bounds that are not known at compile time).

Definition at line 102 of file tensor_product_point_kernels.h.

◆ do_interpolate_xy()

template<int dim, int length, typename Number2 , typename Number , int n_values = 1, bool do_renumber = true, int stride = 1>
std::array< typename ProductTypeNoPoint< Number, Number2 >::type, 2+n_values > internal::do_interpolate_xy ( const Number *  values,
const std::vector< unsigned int > &  renumber,
const ::ndarray< Number2, 2, dim > *  shapes,
const int  n_shapes_runtime,
int i 
)
inline

Interpolate inner dimensions of tensor product shape functions.

Definition at line 146 of file tensor_product_point_kernels.h.

◆ evaluate_tensor_product_value_and_gradient_shapes()

template<int dim, typename Number , typename Number2 , int n_values = 1, bool do_renumber = true, int stride = 1>
std::array< typename ProductTypeNoPoint< Number, Number2 >::type, dim+n_values > internal::evaluate_tensor_product_value_and_gradient_shapes ( const ::ndarray< Number2, 2, dim > *  shapes,
const int  n_shapes,
const Number *  values,
const std::vector< unsigned int > &  renumber = {} 
)
inline

Interpolates the values and gradients into the points specified in compute_values_of_array() with help of the precomputed shapes.

Definition at line 238 of file tensor_product_point_kernels.h.

◆ evaluate_tensor_product_value_and_gradient_linear()

template<int dim, typename Number , typename Number2 , int n_values = 1, int stride = 1>
std::array< typename ProductTypeNoPoint< Number, Number2 >::type, dim+n_values > internal::evaluate_tensor_product_value_and_gradient_linear ( const Number *  values,
const Point< dim, Number2 > &  p 
)
inline

Specializes evaluate_tensor_product_value_and_gradient() for linear polynomials which massively reduces the necessary instructions.

Definition at line 372 of file tensor_product_point_kernels.h.

◆ evaluate_tensor_product_value_and_gradient()

template<int dim, typename Number , typename Number2 >
std::pair< typename ProductTypeNoPoint< Number, Number2 >::type, Tensor< 1, dim, typename ProductTypeNoPoint< Number, Number2 >::type > > internal::evaluate_tensor_product_value_and_gradient ( const std::vector< Polynomials::Polynomial< double > > &  poly,
const ArrayView< const Number > &  values,
const Point< dim, Number2 > &  p,
const bool  d_linear = false,
const std::vector< unsigned int > &  renumber = {} 
)
inline

Compute the polynomial interpolation of a tensor product shape function \(\varphi_i\) given a vector of coefficients \(u_i\) in the form \(u_h(\mathbf{x}) = \sum_{i=1}^{k^d} \varphi_i(\mathbf{x}) u_i\). The shape functions \(\varphi_i(\mathbf{x}) = \prod_{d=1}^{\text{dim}}\varphi_{i_d}^\text{1d}(x_d)\) represent a tensor product. The function returns a pair with the value of the interpolation as the first component and the gradient in reference coordinates as the second component. Note that for compound types (e.g. the values field begin a Point<spacedim> argument), the components of the gradient are sorted as Tensor<1, dim, Tensor<1, spacedim>> with the derivatives as the first index; this is a consequence of the generic arguments in the function.

Parameters
polyThe underlying one-dimensional polynomial basis \(\{\varphi^{1d}_{i_1}\}\) given as a vector of polynomials.
valuesThe expansion coefficients \(u_i\) of type Number in the polynomial interpolation. The coefficients can be simply double variables but e.g. also Point<spacedim> in case they define arithmetic operations with the type Number2.
pThe position in reference coordinates where the interpolation should be evaluated.
d_linearFlag to specify whether a d-linear (linear in 1d, bi-linear in 2d, tri-linear in 3d) interpolation should be made, which allows to unroll loops and considerably speed up evaluation.
renumberOptional parameter to specify a renumbering in the coefficient vector, assuming that values[renumber[i]] returns the lexicographic (tensor product) entry of the coefficients. If the vector is entry, the values are assumed to be sorted lexicographically.

Definition at line 499 of file tensor_product_point_kernels.h.

◆ do_interpolate_xy_value()

template<int dim, int length, typename Number2 , typename Number , bool do_renumber = true, int stride = 1>
ProductTypeNoPoint< Number, Number2 >::type internal::do_interpolate_xy_value ( const Number *  values,
const std::vector< unsigned int > &  renumber,
const ::ndarray< Number2, 2, dim > *  shapes,
const int  n_shapes_runtime,
int i 
)
inline

Definition at line 542 of file tensor_product_point_kernels.h.

◆ evaluate_tensor_product_value_shapes()

template<int dim, typename Number , typename Number2 , bool do_renumber = true, int stride = 1>
ProductTypeNoPoint< Number, Number2 >::type internal::evaluate_tensor_product_value_shapes ( const ::ndarray< Number2, 2, dim > *  shapes,
const int  n_shapes,
const Number *  values,
const std::vector< unsigned int > &  renumber = {} 
)
inline

Definition at line 581 of file tensor_product_point_kernels.h.

◆ evaluate_tensor_product_value_linear()

template<int dim, typename Number , typename Number2 , int stride = 1>
ProductTypeNoPoint< Number, Number2 >::type internal::evaluate_tensor_product_value_linear ( const Number *  values,
const Point< dim, Number2 > &  p 
)
inline

Definition at line 671 of file tensor_product_point_kernels.h.

◆ evaluate_tensor_product_value()

template<int dim, typename Number , typename Number2 >
ProductTypeNoPoint< Number, Number2 >::type internal::evaluate_tensor_product_value ( const std::vector< Polynomials::Polynomial< double > > &  poly,
const ArrayView< const Number > &  values,
const Point< dim, Number2 > &  p,
const bool  d_linear = false,
const std::vector< unsigned int > &  renumber = {} 
)
inline

Definition at line 720 of file tensor_product_point_kernels.h.

◆ evaluate_tensor_product_higher_derivatives() [1/3]

template<int derivative_order, typename Number , typename Number2 >
Tensor< 1, 1, typename ProductTypeNoPoint< Number, Number2 >::type > internal::evaluate_tensor_product_higher_derivatives ( const std::vector< Polynomials::Polynomial< double > > &  poly,
const ArrayView< const Number > &  values,
const Point< 1, Number2 > &  p,
const std::vector< unsigned int > &  renumber = {} 
)
inline

This function computes derivatives of arbitrary orders in 1d, returning a Tensor with the respective derivative

Definition at line 756 of file tensor_product_point_kernels.h.

◆ evaluate_tensor_product_higher_derivatives() [2/3]

template<int derivative_order, typename Number , typename Number2 >
Tensor< 1, derivative_order+1, typename ProductTypeNoPoint< Number, Number2 >::type > internal::evaluate_tensor_product_higher_derivatives ( const std::vector< Polynomials::Polynomial< double > > &  poly,
const ArrayView< const Number > &  values,
const Point< 2, Number2 > &  p,
const std::vector< unsigned int > &  renumber = {} 
)
inline

This function computes derivatives of arbitrary orders in 2d, returning a Tensor with the respective derivatives

Definition at line 796 of file tensor_product_point_kernels.h.

◆ evaluate_tensor_product_higher_derivatives() [3/3]

template<int derivative_order, typename Number , typename Number2 >
Tensor< 1,((derivative_order+1) *(derivative_order+2))/2, typename ProductTypeNoPoint< Number, Number2 >::type > internal::evaluate_tensor_product_higher_derivatives ( const std::vector< Polynomials::Polynomial< double > > &  poly,
const ArrayView< const Number > &  values,
const Point< 3, Number2 > &  p,
const std::vector< unsigned int > &  renumber = {} 
)
inline

This function computes derivatives of arbitrary orders in 3d, returning a Tensor with the respective derivatives

Definition at line 848 of file tensor_product_point_kernels.h.

◆ evaluate_tensor_product_hessian()

template<int dim, typename Number , typename Number2 >
SymmetricTensor< 2, dim, typename ProductTypeNoPoint< Number, Number2 >::type > internal::evaluate_tensor_product_hessian ( const std::vector< Polynomials::Polynomial< double > > &  poly,
const ArrayView< const Number > &  values,
const Point< dim, Number2 > &  p,
const std::vector< unsigned int > &  renumber = {} 
)

Definition at line 912 of file tensor_product_point_kernels.h.

◆ do_apply_test_functions_xy()

template<int dim, int length, typename Number2 , typename Number , bool add, int n_values = 1>
void internal::do_apply_test_functions_xy ( Number2 *  values,
const ::ndarray< Number, 2, dim > *  shapes,
const std::array< Number2, 2+n_values > &  test_grads_value,
const int  n_shapes_runtime,
int i 
)
inline

Test inner dimensions of tensor product shape functions and accumulate.

Definition at line 961 of file tensor_product_point_kernels.h.

◆ integrate_add_tensor_product_value_and_gradient_shapes()

template<int dim, typename Number , typename Number2 , bool add, int n_values = 1>
void internal::integrate_add_tensor_product_value_and_gradient_shapes ( const ::ndarray< Number, 2, dim > *  shapes,
const int  n_shapes,
const Number2 *  value,
const Tensor< 1, dim, Number2 > &  gradient,
Number2 *  values 
)
inline

Same as evaluate_tensor_product_value_and_gradient_shapes() but for integration.

Definition at line 1074 of file tensor_product_point_kernels.h.

◆ integrate_add_tensor_product_value_and_gradient_linear()

template<int dim, typename Number , typename Number2 , bool add, int n_values = 1>
void internal::integrate_add_tensor_product_value_and_gradient_linear ( const Number2 *  value,
const Tensor< 1, dim, Number2 > &  gradient,
Number2 *  values,
const Point< dim, Number > &  p 
)
inline

Specializes integrate_add_tensor_product_value_and_gradient_shapes() for linear polynomials which massively reduces the necessary instructions.

Definition at line 1158 of file tensor_product_point_kernels.h.

◆ integrate_tensor_product_value_and_gradient()

template<bool is_linear, int dim, typename Number , typename Number2 , int n_values = 1>
void internal::integrate_tensor_product_value_and_gradient ( const ::ndarray< Number, 2, dim > *  shapes,
const unsigned int  n_shapes,
const Number2 *  value,
const Tensor< 1, dim, Number2 > &  gradient,
Number2 *  values,
const Point< dim, Number > &  p,
const bool  do_add 
)
inline

Calls the correct integrate_add_tensor_product_value_and_gradient_...() function depending on if values should be added to or set and if polynomials are linear.

Definition at line 1322 of file tensor_product_point_kernels.h.

◆ do_apply_test_functions_xy_value()

template<int dim, int length, typename Number2 , typename Number , bool add>
void internal::do_apply_test_functions_xy_value ( Number2 *  values,
const ::ndarray< Number, 2, dim > *  shapes,
const Number2 &  test_value,
const int  n_shapes_runtime,
int i 
)
inline

Test inner dimensions of tensor product shape functions and accumulate.

Definition at line 1378 of file tensor_product_point_kernels.h.

◆ integrate_add_tensor_product_value_shapes()

template<int dim, typename Number , typename Number2 , bool add>
void internal::integrate_add_tensor_product_value_shapes ( const ::ndarray< Number, 2, dim > *  shapes,
const int  n_shapes,
const Number2 &  value,
Number2 *  values 
)
inline

Same as evaluate_tensor_product_value_shapes() but for integration.

Definition at line 1434 of file tensor_product_point_kernels.h.

◆ integrate_add_tensor_product_value_linear()

template<int dim, typename Number , typename Number2 , bool add>
void internal::integrate_add_tensor_product_value_linear ( const Number2 &  value,
Number2 *  values,
const Point< dim, Number > &  p 
)
inline

Specializes integrate_tensor_product_value_shapes() for linear polynomials which massively reduces the necessary instructions.

Definition at line 1491 of file tensor_product_point_kernels.h.

◆ integrate_tensor_product_value()

template<bool is_linear, int dim, typename Number , typename Number2 >
void internal::integrate_tensor_product_value ( const ::ndarray< Number, 2, dim > *  shapes,
const unsigned int  n_shapes,
const Number2 &  value,
Number2 *  values,
const Point< dim, Number > &  p,
const bool  do_add 
)
inline

Calls the correct integrate_add_tensor_product_value_...() function depending on if values should be added to or set and if polynomials are linear.

Definition at line 1588 of file tensor_product_point_kernels.h.

◆ vector_access() [1/2]

template<typename VectorType , std::enable_if_t< is_serial_vector_or_array< VectorType >::value, VectorType > * = nullptr>
VectorType::value_type internal::vector_access ( const VectorType &  vec,
const unsigned int  entry 
)
inline

Definition at line 45 of file vector_access_internal.h.

◆ vector_access() [2/2]

template<typename VectorType , std::enable_if_t< is_serial_vector_or_array< VectorType >::value, VectorType > * = nullptr>
VectorType::value_type & internal::vector_access ( VectorType &  vec,
const unsigned int  entry 
)
inline

Definition at line 57 of file vector_access_internal.h.

◆ vector_access_add()

template<typename VectorType , std::enable_if_t< has_add_local_element< VectorType >, VectorType > * = nullptr>
void internal::vector_access_add ( VectorType &  vec,
const unsigned int  entry,
const typename VectorType::value_type &  val 
)
inline

Definition at line 94 of file vector_access_internal.h.

◆ vector_access_add_global()

template<typename VectorType , std::enable_if_t< has_add_local_element< VectorType >, VectorType > * = nullptr>
void internal::vector_access_add_global ( VectorType &  vec,
const types::global_dof_index  entry,
const typename VectorType::value_type &  val 
)
inline

Definition at line 120 of file vector_access_internal.h.

◆ vector_access_set()

template<typename VectorType , std::enable_if_t< has_set_local_element< VectorType >, VectorType > * = nullptr>
void internal::vector_access_set ( VectorType &  vec,
const unsigned int  entry,
const typename VectorType::value_type &  val 
)
inline

Definition at line 146 of file vector_access_internal.h.

◆ check_vector_compatibility()

template<int dim, typename Number , typename VectorizedArrayType , typename VectorType , std::enable_if_t<!has_partitioners_are_compatible< VectorType >, VectorType > * = nullptr>
void internal::check_vector_compatibility ( const VectorType &  vec,
const MatrixFree< dim, Number, VectorizedArrayType > &  matrix_free,
const internal::MatrixFreeFunctions::DoFInfo dof_info 
)
inline

Definition at line 179 of file vector_access_internal.h.

◆ is_active_iterator() [1/3]

template<class DI >
bool internal::is_active_iterator ( const DI &  )
inline

Find out if an iterator supports inactive cells.

Definition at line 48 of file loop.h.

◆ is_active_iterator() [2/3]

template<typename AccessorType >
bool internal::is_active_iterator ( const TriaActiveIterator< AccessorType > &  )
inline

Definition at line 55 of file loop.h.

◆ is_active_iterator() [3/3]

template<typename AccessorType >
bool internal::is_active_iterator ( const ::FilteredIterator< TriaActiveIterator< AccessorType > > &  )
inline

Definition at line 62 of file loop.h.

◆ assemble()

template<int dim, class DOFINFO , class A >
void internal::assemble ( const MeshWorker::DoFInfoBox< dim, DOFINFO > &  dinfo,
A *  assembler 
)

Definition at line 70 of file loop.h.

◆ get_degree()

template<int dim>
unsigned int internal::get_degree ( const std::vector< typename BarycentricPolynomials< dim >::PolyType > &  polys)

Get the highest degree of the barycentric polynomial (in Cartesian coordinates).

Definition at line 29 of file polynomials_barycentric.cc.

◆ get_abs() [1/2]

template<typename Number >
std::enable_if_t<!std::is_unsigned_v< Number >, typename numbers::NumberTraits< Number >::real_type > internal::get_abs ( const Number  a)

In the set_dof_values(), we need to invoke abs() also on unsigned data types, which is ill-formed on newer C++ standards. To avoid this, we use std::abs on default types, but simply return the number on unsigned types.

Definition at line 61 of file dof_accessor_set.cc.

◆ get_abs() [2/2]

template<typename Number >
std::enable_if_t< std::is_unsigned_v< Number >, Number > internal::get_abs ( const Number  a)

Definition at line 68 of file dof_accessor_set.cc.

◆ set_ghost_state()

template<typename VectorType , std::enable_if_t< has_set_ghost_state< VectorType >, VectorType > * = nullptr>
void internal::set_ghost_state ( VectorType &  vector,
const bool  ghosted 
)

Definition at line 105 of file dof_accessor_set.cc.

◆ set_dof_values()

template<int dim, int spacedim, bool lda, class OutputVector , typename number >
void internal::set_dof_values ( const DoFCellAccessor< dim, spacedim, lda > &  cell,
const Vector< number > &  local_values,
OutputVector &  values,
const bool  perform_check 
)

Helper function that sets the values on a cell, but also checks if the new values are similar to the old values.

Definition at line 130 of file dof_accessor_set.cc.

◆ process_by_interpolation()

template<int dim, int spacedim, bool lda, class OutputVector , typename number >
void internal::process_by_interpolation ( const DoFCellAccessor< dim, spacedim, lda > &  cell,
const Vector< number > &  local_values,
OutputVector &  values,
const types::fe_index  fe_index_,
const std::function< void(const DoFCellAccessor< dim, spacedim, lda > &cell, const Vector< number > &local_values, OutputVector &values)> &  processor 
)

Definition at line 174 of file dof_accessor_set.cc.

◆ policy_to_string()

template<int dim, int spacedim>
std::string internal::policy_to_string ( const ::internal::DoFHandlerImplementation::Policy::PolicyBase< dim, spacedim > &  policy)

Definition at line 54 of file dof_handler.cc.

◆ number_unique_entries()

unsigned int internal::number_unique_entries ( const std::vector< unsigned int > &  vector)

Definition at line 98 of file fe_data.cc.

◆ get_regularity_from_degree()

unsigned int internal::get_regularity_from_degree ( const unsigned int  fe_degree)
inline

Definition at line 65 of file fe_hermite.cc.

◆ get_hermite_dpo_vector()

std::vector< unsigned int > internal::get_hermite_dpo_vector ( const unsigned int  dim,
const unsigned int  regularity 
)
inline

Definition at line 73 of file fe_hermite.cc.

◆ hermite_hierarchic_to_lexicographic_numbering() [1/2]

template<int dim>
void internal::hermite_hierarchic_to_lexicographic_numbering ( const unsigned int  regularity,
std::vector< unsigned int > &  h2l 
)

◆ hermite_hierarchic_to_lexicographic_numbering< 1 >()

template<>
void internal::hermite_hierarchic_to_lexicographic_numbering< 1 > ( const unsigned int  regularity,
std::vector< unsigned int > &  h2l 
)

Definition at line 96 of file fe_hermite.cc.

◆ hermite_hierarchic_to_lexicographic_numbering< 2 >()

template<>
void internal::hermite_hierarchic_to_lexicographic_numbering< 2 > ( const unsigned int  regularity,
std::vector< unsigned int > &  h2l 
)

Definition at line 114 of file fe_hermite.cc.

◆ hermite_hierarchic_to_lexicographic_numbering< 3 >()

template<>
void internal::hermite_hierarchic_to_lexicographic_numbering< 3 > ( const unsigned int  regularity,
std::vector< unsigned int > &  h2l 
)

Definition at line 141 of file fe_hermite.cc.

◆ hermite_hierarchic_to_lexicographic_numbering() [2/2]

template<int dim>
std::vector< unsigned int > internal::hermite_hierarchic_to_lexicographic_numbering ( const unsigned int  regularity)
inline

Definition at line 176 of file fe_hermite.cc.

◆ hermite_lexicographic_to_hierarchic_numbering()

template<int dim>
std::vector< unsigned int > internal::hermite_lexicographic_to_hierarchic_numbering ( const unsigned int  regularity)

Definition at line 192 of file fe_hermite.cc.

◆ hermite_face_lexicographic_to_hierarchic_numbering()

template<int dim>
std::vector< unsigned int > internal::hermite_face_lexicographic_to_hierarchic_numbering ( const unsigned int  regularity)
inline

Definition at line 202 of file fe_hermite.cc.

◆ get_hermite_polynomials()

template<int dim>
TensorProductPolynomials< dim > internal::get_hermite_polynomials ( const unsigned int  fe_degree)

Definition at line 216 of file fe_hermite.cc.

◆ setup_primitive_offset_table()

template<int dim, int spacedim = dim>
Table< 2, unsigned int > internal::setup_primitive_offset_table ( const FESystem< dim, spacedim > &  fe,
const unsigned int  base_no 
)

Setup a table of offsets for a primitive FE. Unlike the nonprimitive case, here the number of nonzero components per shape function is always 1 and the number of components in the FE is always the multiplicity.

Definition at line 56 of file fe_system.cc.

◆ setup_nonprimitive_offset_table()

template<int dim, int spacedim = dim>
std::vector< typename FESystem< dim, spacedim >::BaseOffsets > internal::setup_nonprimitive_offset_table ( const FESystem< dim, spacedim > &  fe,
const unsigned int  base_no 
)

Setup a table of offsets for a nonprimitive FE.

Definition at line 93 of file fe_system.cc.

◆ copy_primitive_base_element_values()

template<int dim, int spacedim = dim>
void internal::copy_primitive_base_element_values ( const FESystem< dim, spacedim > &  fe,
const unsigned int  base_no,
const UpdateFlags  base_flags,
const Table< 2, unsigned int > &  base_to_system_table,
const FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &  base_data,
FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &  output_data 
)

Copy data between internal FEValues objects from a primitive FE to the current FE.

Definition at line 134 of file fe_system.cc.

◆ copy_nonprimitive_base_element_values()

template<int dim, int spacedim = dim>
void internal::copy_nonprimitive_base_element_values ( const FESystem< dim, spacedim > &  fe,
const unsigned int  base_no,
const unsigned int  n_q_points,
const UpdateFlags  base_flags,
const std::vector< typename FESystem< dim, spacedim >::BaseOffsets > &  offsets,
const FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &  base_data,
FEValuesImplementation::FiniteElementRelatedData< dim, spacedim > &  output_data 
)

Copy data between internal FEValues objects from a nonprimitive FE to the current FE.

Definition at line 189 of file fe_system.cc.

◆ make_shape_function_to_row_table()

template<int dim, int spacedim>
std::vector< unsigned int > internal::make_shape_function_to_row_table ( const FiniteElement< dim, spacedim > &  fe)
inline

Definition at line 49 of file fe_values.cc.

◆ do_function_values() [1/2]

template<typename Number , typename Number2 >
void internal::do_function_values ( const ArrayView< Number2 > &  dof_values,
const ::Table< 2, double > &  shape_values,
std::vector< Number > &  values 
)

Definition at line 266 of file fe_values_base.cc.

◆ do_function_values() [2/2]

template<int dim, int spacedim, typename VectorType >
void internal::do_function_values ( const ArrayView< typename VectorType::value_type > &  dof_values,
const ::Table< 2, double > &  shape_values,
const FiniteElement< dim, spacedim > &  fe,
const std::vector< unsigned int > &  shape_function_to_row_table,
ArrayView< VectorType >  values,
const bool  quadrature_points_fastest = false,
const unsigned int  component_multiple = 1 
)

Definition at line 306 of file fe_values_base.cc.

◆ do_function_derivatives() [1/2]

template<int order, int spacedim, typename Number >
void internal::do_function_derivatives ( const ArrayView< Number > &  dof_values,
const ::Table< 2, Tensor< order, spacedim > > &  shape_derivatives,
std::vector< Tensor< order, spacedim, Number > > &  derivatives 
)

Definition at line 417 of file fe_values_base.cc.

◆ do_function_derivatives() [2/2]

template<int order, int dim, int spacedim, typename Number >
void internal::do_function_derivatives ( const ArrayView< Number > &  dof_values,
const ::Table< 2, Tensor< order, spacedim > > &  shape_derivatives,
const FiniteElement< dim, spacedim > &  fe,
const std::vector< unsigned int > &  shape_function_to_row_table,
ArrayView< std::vector< Tensor< order, spacedim, Number > > >  derivatives,
const bool  quadrature_points_fastest = false,
const unsigned int  component_multiple = 1 
)

Definition at line 457 of file fe_values_base.cc.

◆ do_function_laplacians() [1/2]

template<int spacedim, typename Number , typename Number2 >
void internal::do_function_laplacians ( const ArrayView< Number2 > &  dof_values,
const ::Table< 2, Tensor< 2, spacedim > > &  shape_hessians,
std::vector< Number > &  laplacians 
)

Definition at line 564 of file fe_values_base.cc.

◆ do_function_laplacians() [2/2]

template<int dim, int spacedim, typename VectorType , typename Number >
void internal::do_function_laplacians ( const ArrayView< Number > &  dof_values,
const ::Table< 2, Tensor< 2, spacedim > > &  shape_hessians,
const FiniteElement< dim, spacedim > &  fe,
const std::vector< unsigned int > &  shape_function_to_row_table,
std::vector< VectorType > &  laplacians,
const bool  quadrature_points_fastest = false,
const unsigned int  component_multiple = 1 
)

Definition at line 601 of file fe_values_base.cc.

◆ apply_exponential_map()

Tensor< 1, 3 > internal::apply_exponential_map ( const Tensor< 1, 3 > &  u,
const Tensor< 1, 3 > &  dir 
)

Definition at line 51 of file manifold_lib.cc.

◆ projected_direction()

Tensor< 1, 3 > internal::projected_direction ( const Tensor< 1, 3 > &  u,
const Tensor< 1, 3 > &  v 
)

Definition at line 71 of file manifold_lib.cc.

◆ compute_normal() [1/2]

template<int spacedim>
Point< spacedim > internal::compute_normal ( const Tensor< 1, spacedim > &  ,
bool  = false 
)

Definition at line 82 of file manifold_lib.cc.

◆ compute_normal() [2/2]

Point< 3 > internal::compute_normal ( const Tensor< 1, 3 > &  vector,
bool  normalize = false 
)

Definition at line 89 of file manifold_lib.cc.

Variable Documentation

◆ dealii_initialized_kokkos

bool internal::dealii_initialized_kokkos = false

Records if Kokkos has been initialized by deal.II. The value stored is only meaningful after ensure_kokkos_initialized() has been called.

Definition at line 27 of file kokkos.cc.

◆ wedge_table_1

const constexpr ::ndarray<unsigned int, 6, 2> internal::wedge_table_1
staticconstexpr
Initial value:
{
{{{0, 0}}, {{1, 0}}, {{2, 0}}, {{0, 1}}, {{1, 1}}, {{2, 1}}}}

Decompose the shape-function index of a linear wedge into an index to access the right shape function within the triangle and within the line.

Definition at line 35 of file polynomials_wedge.h.

◆ wedge_table_2

const constexpr ::ndarray<unsigned int, 18, 2> internal::wedge_table_2
staticconstexpr
Initial value:
{
{{{0, 0}},
{{1, 0}},
{{2, 0}},
{{0, 1}},
{{1, 1}},
{{2, 1}},
{{3, 0}},
{{4, 0}},
{{5, 0}},
{{3, 1}},
{{4, 1}},
{{5, 1}},
{{0, 2}},
{{1, 2}},
{{2, 2}},
{{3, 2}},
{{4, 2}},
{{5, 2}}}}

Decompose the shape-function index of a quadratic wedge into an index to access the right shape function within the triangle and within the line.

Definition at line 43 of file polynomials_wedge.h.

◆ is_supported_operation

template<template< class... > class Op, class... Args>
constexpr bool internal::is_supported_operation
constexpr
Initial value:
=
SupportsOperation::is_detected<Op, Args...>::value

A constexpr variable that describes whether or not Op<Args...> is a valid expression.

The way this is used is to define an Op operation template that describes the operation we want to perform, and Args is a template pack that describes the arguments to the operation. This variable then states whether the operation, with these arguments, leads to a valid C++ expression.

An example is if one wanted to find out whether a type T has a get_mpi_communicator() member function. In that case, one would write the operation as

template <typename T>
using get_mpi_communicator_op
= decltype(std::declval<T>().get_mpi_communicator());

and could define a variable like

template <typename T>
constexpr bool has_get_mpi_communicator =
is_supported_operation<get_mpi_communicator_op, T>;

The trick used here is that get_mpi_communicator_op is a general template, but when used with a type that does not have a get_mpi_communicator() member variable, the decltype(...) operation will fail because its argument does not represent a valid expression for such a type. In other words, for such types T that do not have such a member function, the general template get_mpi_communicator_op represents a valid declaration, but the instantiation get_mpi_communicator_op<T> is not, and the variable declared here detects and reports this.

Definition at line 158 of file template_constraints.h.

◆ has_block

template<typename T >
constexpr bool internal::has_block = internal::is_supported_operation<has_block_t, T>
constexpr

Definition at line 52 of file block_vector_base.h.

◆ has_n_blocks

template<typename T >
constexpr bool internal::has_n_blocks
constexpr
Initial value:
=
internal::is_supported_operation<has_n_blocks_t, T>

Definition at line 58 of file block_vector_base.h.

◆ is_block_vector

template<typename T >
constexpr bool internal::is_block_vector = has_block<T> && has_n_blocks<T>
constexpr

Definition at line 62 of file block_vector_base.h.

◆ is_dealii_vector

template<typename VectorType >
constexpr bool internal::is_dealii_vector
constexpr
Initial value:
=
std::is_same_v<VectorType,
std::is_same_v<VectorType,
std::is_same_v<VectorType,
typename VectorType::value_type>> ||
std::is_same_v<VectorType,
typename VectorType::value_type>>

Check if a vector is a deal.II vector.

Definition at line 77 of file dof_accessor_set.cc.

◆ has_set_ghost_state

template<typename T >
constexpr bool internal::has_set_ghost_state
constexpr
Initial value:
=
is_supported_operation<set_ghost_state_t, T>

Definition at line 98 of file dof_accessor_set.cc.

◆ invalid_pull_back_coordinate

constexpr double internal::invalid_pull_back_coordinate = 20.0
staticconstexpr

Definition at line 45 of file manifold_lib.cc.