Reference documentation for deal.II version Git d902c8c1aa 2019-12-15 00:36:45 -0500
\(\newcommand{\dealcoloneq}{\mathrel{\vcenter{:}}=}\)
Public Types | Public Member Functions | Public Attributes | Static Public Attributes | Private Member Functions | Related Functions | List of all members
VectorizedArray< Number, width > Class Template Reference

#include <deal.II/base/vectorization.h>

Inheritance diagram for VectorizedArray< Number, width >:
[legend]

Public Types

using value_type = Number
 

Public Member Functions

 VectorizedArray ()=default
 
 VectorizedArray (const Number scalar)
 
VectorizedArrayoperator= (const Number scalar)
 
Number & operator[] (const unsigned int comp)
 
const Number & operator[] (const unsigned int comp) const
 
VectorizedArrayoperator+= (const VectorizedArray &vec)
 
VectorizedArrayoperator-= (const VectorizedArray &vec)
 
VectorizedArrayoperator*= (const VectorizedArray &vec)
 
VectorizedArrayoperator/= (const VectorizedArray &vec)
 
void load (const Number *ptr)
 
void store (Number *ptr) const
 
void streaming_store (Number *ptr) const
 
void gather (const Number *base_ptr, const unsigned int *offsets)
 
void scatter (const unsigned int *offsets, Number *base_ptr) const
 
- Public Member Functions inherited from VectorizedArrayBase< VectorizedArray< Number, width > >
VectorizedArrayIterator< VectorizedArray< Number, width > > begin ()
 
VectorizedArrayIterator< const VectorizedArray< Number, width > > begin () const
 
VectorizedArrayIterator< VectorizedArray< Number, width > > end ()
 
VectorizedArrayIterator< const VectorizedArray< Number, width > > end () const
 

Public Attributes

Number data
 

Static Public Attributes

static const unsigned int n_array_elements = 1
 

Private Member Functions

VectorizedArray get_sqrt () const
 
VectorizedArray get_abs () const
 
VectorizedArray get_max (const VectorizedArray &other) const
 
VectorizedArray get_min (const VectorizedArray &other) const
 

Related Functions

(Note that these are not member functions.)

template<typename Number , int width>
VectorizedArray< Number, width > sin (const ::VectorizedArray< Number, width > &x)
 
template<typename Number , int width>
VectorizedArray< Number, width > cos (const ::VectorizedArray< Number, width > &x)
 
template<typename Number , int width>
VectorizedArray< Number, width > tan (const ::VectorizedArray< Number, width > &x)
 
template<typename Number , int width>
VectorizedArray< Number, width > exp (const ::VectorizedArray< Number, width > &x)
 
template<typename Number , int width>
VectorizedArray< Number, width > log (const ::VectorizedArray< Number, width > &x)
 
template<typename Number , int width>
VectorizedArray< Number, width > sqrt (const ::VectorizedArray< Number, width > &x)
 
template<typename Number , int width>
VectorizedArray< Number, width > pow (const ::VectorizedArray< Number, width > &x, const Number p)
 
template<typename Number , int width>
VectorizedArray< Number, width > abs (const ::VectorizedArray< Number, width > &x)
 
template<typename Number , int width>
VectorizedArray< Number, width > max (const ::VectorizedArray< Number, width > &x, const ::VectorizedArray< Number, width > &y)
 
template<typename Number , int width>
VectorizedArray< Number, width > min (const ::VectorizedArray< Number, width > &x, const ::VectorizedArray< Number, width > &y)
 
Packing and unpacking of a VectorizedArray
template<typename Number , int width = internal::VectorizedArrayWidthSpecifier<Number>::max_width>
VectorizedArray< Number, width > make_vectorized_array (const Number &u)
 
template<typename VectorizedArrayType >
VectorizedArrayType make_vectorized_array (const typename VectorizedArrayType::value_type &u)
 
template<typename Number , int width>
void vectorized_load_and_transpose (const unsigned int n_entries, const Number *in, const unsigned int *offsets, VectorizedArray< Number, width > *out)
 
template<typename Number , int width>
void vectorized_transpose_and_store (const bool add_into, const unsigned int n_entries, const VectorizedArray< Number, width > *in, const unsigned int *offsets, Number *out)
 
Arithmetic operations with VectorizedArray
template<typename Number , int width>
bool operator== (const VectorizedArray< Number, width > &lhs, const VectorizedArray< Number, width > &rhs)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator+ (const VectorizedArray< Number, width > &u, const VectorizedArray< Number, width > &v)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator- (const VectorizedArray< Number, width > &u, const VectorizedArray< Number, width > &v)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator* (const VectorizedArray< Number, width > &u, const VectorizedArray< Number, width > &v)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator/ (const VectorizedArray< Number, width > &u, const VectorizedArray< Number, width > &v)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator+ (const Number &u, const VectorizedArray< Number, width > &v)
 
template<int width>
VectorizedArray< float, width > operator+ (const double u, const VectorizedArray< float, width > &v)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator+ (const VectorizedArray< Number, width > &v, const Number &u)
 
template<int width>
VectorizedArray< float, width > operator+ (const VectorizedArray< float, width > &v, const double u)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator- (const Number &u, const VectorizedArray< Number, width > &v)
 
template<int width>
VectorizedArray< float, width > operator- (const double u, const VectorizedArray< float, width > &v)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator- (const VectorizedArray< Number, width > &v, const Number &u)
 
template<int width>
VectorizedArray< float, width > operator- (const VectorizedArray< float, width > &v, const double u)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator* (const Number &u, const VectorizedArray< Number, width > &v)
 
template<int width>
VectorizedArray< float, width > operator* (const double u, const VectorizedArray< float, width > &v)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator* (const VectorizedArray< Number, width > &v, const Number &u)
 
template<int width>
VectorizedArray< float, width > operator* (const VectorizedArray< float, width > &v, const double u)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator/ (const Number &u, const VectorizedArray< Number, width > &v)
 
template<int width>
VectorizedArray< float, width > operator/ (const double u, const VectorizedArray< float, width > &v)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator/ (const VectorizedArray< Number, width > &v, const Number &u)
 
template<int width>
VectorizedArray< float, width > operator/ (const VectorizedArray< float, width > &v, const double u)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator+ (const VectorizedArray< Number, width > &u)
 
template<typename Number , int width>
VectorizedArray< Number, width > operator- (const VectorizedArray< Number, width > &u)
 
template<typename Number , int width>
std::ostream & operator<< (std::ostream &out, const VectorizedArray< Number, width > &p)
 

Additional Inherited Members

- Static Public Member Functions inherited from VectorizedArrayBase< VectorizedArray< Number, width > >
static constexpr unsigned int size ()
 

Detailed Description

template<typename Number, int width>
class VectorizedArray< Number, width >

This generic class defines a unified interface to a vectorized data type. For general template arguments, this class simply corresponds to the template argument. For example, VectorizedArray<long double> is nothing else but a wrapper around long double with exactly one data field of type long double and overloaded arithmetic operations. This means that VectorizedArray<ComplicatedType> has a similar layout as ComplicatedType, provided that ComplicatedType defines basic arithmetic operations. For floats and doubles, an array of numbers are packed together with the goal to be processed in a single-instruction/multiple-data (SIMD) fashion. In the SIMD context, the elements of such a short vector are often called lanes. The number of elements packed together, i.e., the number of lanes, depends on the computer system and compiler flags that are used for compilation of deal.II. The fundamental idea of these packed data types is to use one single CPU instruction to perform arithmetic operations on the whole array using the processor's vector (SIMD) units. Most computer systems by 2010 standards will use an array of two doubles or four floats, respectively (this corresponds to the SSE/SSE2 data sets) when compiling deal.II on 64-bit operating systems. On Intel Sandy Bridge processors and newer or AMD Bulldozer processors and newer, four doubles or eight floats are used when deal.II is configured using gcc with --with-cpu=native or --with-cpu=corei7-avx. On compilations with AVX-512 support (e.g., Intel Skylake Server from 2017), eight doubles or sixteen floats are used.

This behavior of this class is made similar to the basic data types double and float. The definition of a vectorized array does not initialize the data field but rather leaves it undefined, as is the case for double and float. However, when calling something like VectorizedArray<double> a = VectorizedArray<double>() or VectorizedArray<double> a = 0., it sets all numbers in this field to zero. This class is of standard layout type according to the C++11 standard, which means that there is an equivalent C representation and the class can e.g. be safely copied with std::memcpy. (See also https://en.cppreference.com/w/cpp/named_req/StandardLayoutType.) The standard layout is also necessary for ensuring correct alignment of data with address boundaries when collected in a vector (i.e., when the first element in a vector is properly aligned, all subsequent elements will be correctly aligned, too).

Note that for proper functioning of this class, certain data alignment rules must be respected. This is because the computer expects the starting address of a VectorizedArray<double> field at specific addresses in memory (usually, the address of the vectorized array should be a multiple of the length of the array in bytes). Otherwise, a segmentation fault or a severe loss of performance might occur. When creating a single data field on the stack like VectorizedArray<double> a = 5.;, the compiler will take care of data alignment automatically. However, when allocating a long vector of VectorizedArray<double> data, one needs to respect these rules. Use the class AlignedVector or data containers based on AlignedVector (such as Table) for this purpose. It is a class very similar to std::vector otherwise but always makes sure that data is correctly aligned.

The user can explicitly control the width of a particular instruction set architecture (ISA) extension by specifying the number of lanes via the second template parameter of this wrapper class. For example on Intel Skylake Server, you have the following options for the data type double:

and for Intel Sandy Bridge, Haswell, Broadwell, AMD Bulldozer and Zen/Ryzen:

and for processors with AltiVec support:

for older x86 processors or in case no processor-specific compilation flags were added (i.e., without -D CMAKE_CXX_FLAGS=-march=native or similar flags):

Similar considerations also apply to the data type float.

Wrongly selecting the width, e.g., width=3 or width=8 on a processor which does not support AVX-512 leads to a static assert.

Template Parameters
Numberunderlying data type
widthvector length (optional; if not set, the maximal width of the architecture is used)
Author
Katharina Kormann, Martin Kronbichler, Peter Munch, 2010, 2011, 2019

Definition at line 319 of file vectorization.h.

Member Typedef Documentation

◆ value_type

template<typename Number, int width>
using VectorizedArray< Number, width >::value_type = Number

This gives the type of the array elements.

Definition at line 326 of file vectorization.h.

Constructor & Destructor Documentation

◆ VectorizedArray() [1/2]

template<typename Number, int width>
VectorizedArray< Number, width >::VectorizedArray ( )
default

Default empty constructor, leaving the data in an uninitialized state similar to float/double.

◆ VectorizedArray() [2/2]

template<typename Number, int width>
VectorizedArray< Number, width >::VectorizedArray ( const Number  scalar)
inline

Construct an array with the given scalar broadcast to all lanes.

Definition at line 347 of file vectorization.h.

Member Function Documentation

◆ operator=()

template<typename Number, int width>
VectorizedArray& VectorizedArray< Number, width >::operator= ( const Number  scalar)
inline

This function assigns a scalar to this class.

Definition at line 357 of file vectorization.h.

◆ operator[]() [1/2]

template<typename Number, int width>
Number& VectorizedArray< Number, width >::operator[] ( const unsigned int  comp)
inline

Access operator (only valid with component 0 in the base class without specialization).

Definition at line 368 of file vectorization.h.

◆ operator[]() [2/2]

template<typename Number, int width>
const Number& VectorizedArray< Number, width >::operator[] ( const unsigned int  comp) const
inline

Constant access operator (only valid with component 0 in the base class without specialization).

Definition at line 380 of file vectorization.h.

◆ operator+=()

template<typename Number, int width>
VectorizedArray& VectorizedArray< Number, width >::operator+= ( const VectorizedArray< Number, width > &  vec)
inline

Addition

Definition at line 392 of file vectorization.h.

◆ operator-=()

template<typename Number, int width>
VectorizedArray& VectorizedArray< Number, width >::operator-= ( const VectorizedArray< Number, width > &  vec)
inline

Subtraction

Definition at line 403 of file vectorization.h.

◆ operator*=()

template<typename Number, int width>
VectorizedArray& VectorizedArray< Number, width >::operator*= ( const VectorizedArray< Number, width > &  vec)
inline

Multiplication

Definition at line 414 of file vectorization.h.

◆ operator/=()

template<typename Number, int width>
VectorizedArray& VectorizedArray< Number, width >::operator/= ( const VectorizedArray< Number, width > &  vec)
inline

Division

Definition at line 425 of file vectorization.h.

◆ load()

template<typename Number, int width>
void VectorizedArray< Number, width >::load ( const Number *  ptr)
inline

Load n_array_elements from memory into the calling class, starting at the given address. The pointer ptr needs not be aligned by the amount of bytes in the vectorized array, as opposed to casting a double address to VectorizedArray<double>*.

Definition at line 439 of file vectorization.h.

◆ store()

template<typename Number, int width>
void VectorizedArray< Number, width >::store ( Number *  ptr) const
inline

Write the content of the calling class into memory in form of n_array_elements to the given address. The pointer ptr needs not be aligned by the amount of bytes in the vectorized array, as opposed to casting a double address to VectorizedArray<double>*.

Definition at line 452 of file vectorization.h.

◆ streaming_store()

template<typename Number, int width>
void VectorizedArray< Number, width >::streaming_store ( Number *  ptr) const
inline

Write the content of the calling class into memory in form of n_array_elements to the given address using non-temporal stores that bypass the processor's caches, using _mm_stream_pd store intrinsics on supported CPUs. The destination of the store ptr must be aligned by the amount of bytes in the vectorized array.

This store operation can be faster than usual store operations in case the store is streaming because it avoids the read-for-ownership transfer typically invoked in standard stores. This approximately works as follows (see the literature on computer architecture for details): When an algorithm stores some results to a memory address, a processor typically wants to move it into some of its caches as it expects the data to be re-used again at some point. Since caches are organized in lines of sizes either 64 byte or 128 byte but writes are usually smaller, a processor must first load in the destination cache line upon a write because only part of the cache line is overwritten initially. If a series of stores write data in a chunk bigger than any of its caches could handle, the data finally has to be moved out from the caches to main memory. But since all addressed have first been read, this doubles the load on main memory, which can incur a performance penalty. Furthermore, the organization of caches in a multicore context also requires reading an address before something can be written to cache to that address, see e.g. the Wikipedia article on the MESI protocol for details. The instruction underlying this function call signals to the processor that these two prerequisites on a store are relaxed: Firstly, one expects the whole cache line to be overwritten (meaning that the memory subsystem makes sure that consecutive stores that together span a cache line are merged, and appropriately handling the case where only part of a cache line is written), so there is no need to first read the "remainder" of the cache line. Secondly, the data behind that particular memory will not be subject to cache coherency protocol as it will be in main memory both when the same processor wants to access it again as well as any other processors in a multicore chip. Due to this particular setup, any subsequent access to the data written by this function will need to query main memory, which is slower than an access from a cache both latency-wise and throughput-wise. Thus, this command should only be used for storing large arrays that will collectively not fit into caches, as performance will be degraded otherwise. For a typical use case, see also this blog article.

Note that streaming stores are only available in the specialized SSE/AVX classes of VectorizedArray of type double or float, not in the generic base class.

Definition at line 505 of file vectorization.h.

◆ gather()

template<typename Number, int width>
void VectorizedArray< Number, width >::gather ( const Number *  base_ptr,
const unsigned int *  offsets 
)
inline

Load n_array_elements from memory into the calling class, starting at the given address and with given offsets, each entry from the offset providing one element of the vectorized array.

This operation corresponds to the following code (but uses a more efficient implementation in case the hardware allows for that):

for (unsigned int v=0; v<VectorizedArray<Number>::n_array_elements; ++v)
this->operator[](v) = base_ptr[offsets[v]];

Definition at line 524 of file vectorization.h.

◆ scatter()

template<typename Number, int width>
void VectorizedArray< Number, width >::scatter ( const unsigned int *  offsets,
Number *  base_ptr 
) const
inline

Write the content of the calling class into memory in form of n_array_elements to the given address and the given offsets, filling the elements of the vectorized array into each offset.

This operation corresponds to the following code (but uses a more efficient implementation in case the hardware allows for that):

for (unsigned int v=0; v<VectorizedArray<Number>::n_array_elements; ++v)
base_ptr[offsets[v]] = this->operator[](v);

Definition at line 543 of file vectorization.h.

◆ get_sqrt()

template<typename Number, int width>
VectorizedArray VectorizedArray< Number, width >::get_sqrt ( ) const
inlineprivate

Return the square root of this field. Not for use in user code. Use sqrt(x) instead.

Definition at line 562 of file vectorization.h.

◆ get_abs()

template<typename Number, int width>
VectorizedArray VectorizedArray< Number, width >::get_abs ( ) const
inlineprivate

Return the absolute value of this field. Not for use in user code. Use abs(x) instead.

Definition at line 575 of file vectorization.h.

◆ get_max()

template<typename Number, int width>
VectorizedArray VectorizedArray< Number, width >::get_max ( const VectorizedArray< Number, width > &  other) const
inlineprivate

Return the component-wise maximum of this field and another one. Not for use in user code. Use max(x,y) instead.

Definition at line 588 of file vectorization.h.

◆ get_min()

template<typename Number, int width>
VectorizedArray VectorizedArray< Number, width >::get_min ( const VectorizedArray< Number, width > &  other) const
inlineprivate

Return the component-wise minimum of this field and another one. Not for use in user code. Use min(x,y) instead.

Definition at line 601 of file vectorization.h.

Friends And Related Function Documentation

◆ make_vectorized_array() [1/2]

template<typename Number , int width = internal::VectorizedArrayWidthSpecifier<Number>::max_width>
VectorizedArray< Number, width > make_vectorized_array ( const Number &  u)
related

Create a vectorized array that sets all entries in the array to the given scalar, i.e., broadcasts the scalar to all array elements.

Definition at line 649 of file vectorization.h.

◆ make_vectorized_array() [2/2]

template<typename VectorizedArrayType >
VectorizedArrayType make_vectorized_array ( const typename VectorizedArrayType::value_type &  u)
related

Create a vectorized array of given type and broadcast the scalar value to all array elements.

Definition at line 665 of file vectorization.h.

◆ vectorized_load_and_transpose()

template<typename Number , int width>
void vectorized_load_and_transpose ( const unsigned int  n_entries,
const Number *  in,
const unsigned int *  offsets,
VectorizedArray< Number, width > *  out 
)
related

This method loads VectorizedArray::n_array_elements data streams from the given array in. The offsets to the input array are given by the array offsets. From each stream, n_entries are read. The data is then transposed and stored it into an array of VectorizedArray type. The output array out is expected to be an array of size n_entries. This method operates on plain arrays, so no checks for valid data access are made. It is the user's responsibility to ensure that the given arrays are valid according to the access layout below.

This operation corresponds to a transformation of an array-of-struct (input) into a struct-of-array (output) according to the following formula:

for (unsigned int i=0; i<n_entries; ++i)
for (unsigned int v=0; v<VectorizedArray<Number>::n_array_elements; ++v)
out[i][v] = in[offsets[v]+i];

A more optimized version of this code will be used for supported types.

This is the inverse operation to vectorized_transpose_and_store().

Definition at line 706 of file vectorization.h.

◆ vectorized_transpose_and_store()

template<typename Number , int width>
void vectorized_transpose_and_store ( const bool  add_into,
const unsigned int  n_entries,
const VectorizedArray< Number, width > *  in,
const unsigned int *  offsets,
Number *  out 
)
related

This method stores the vectorized arrays in transposed form into the given output array out with the given offsets offsets. This operation corresponds to a transformation of a struct-of-array (input) into an array- of-struct (output). This method operates on plain array, so no checks for valid data access are made. It is the user's responsibility to ensure that the given arrays are valid according to the access layout below.

This method assumes that the specified offsets do not overlap. Otherwise, the behavior is undefined in the vectorized case. It is the user's responsibility to make sure that the access does not overlap and avoid undefined behavior.

The argument add_into selects where the entries should only be written into the output arrays or the result should be added into the existing entries in the output. For add_into == false, the following code is assumed:

for (unsigned int i=0; i<n_entries; ++i)
for (unsigned int v=0; v<VectorizedArray<Number>::n_array_elements; ++v)
out[offsets[v]+i] = in[i][v];

For add_into == true, the code implements the following action:

for (unsigned int i=0; i<n_entries; ++i)
for (unsigned int v=0; v<VectorizedArray<Number>::n_array_elements; ++v)
out[offsets[v]+i] += in[i][v];

A more optimized version of this code will be used for supported types.

This is the inverse operation to vectorized_load_and_transpose().

Definition at line 760 of file vectorization.h.

◆ operator==()

template<typename Number , int width>
bool operator== ( const VectorizedArray< Number, width > &  lhs,
const VectorizedArray< Number, width > &  rhs 
)
related

Relational operator == for VectorizedArray

Definition at line 3774 of file vectorization.h.

◆ operator+() [1/6]

template<typename Number , int width>
VectorizedArray< Number, width > operator+ ( const VectorizedArray< Number, width > &  u,
const VectorizedArray< Number, width > &  v 
)
related

Addition of two vectorized arrays with operator +.

Definition at line 3793 of file vectorization.h.

◆ operator-() [1/6]

template<typename Number , int width>
VectorizedArray< Number, width > operator- ( const VectorizedArray< Number, width > &  u,
const VectorizedArray< Number, width > &  v 
)
related

Subtraction of two vectorized arrays with operator -.

Definition at line 3807 of file vectorization.h.

◆ operator*() [1/5]

template<typename Number , int width>
VectorizedArray< Number, width > operator* ( const VectorizedArray< Number, width > &  u,
const VectorizedArray< Number, width > &  v 
)
related

Multiplication of two vectorized arrays with operator *.

Definition at line 3821 of file vectorization.h.

◆ operator/() [1/5]

template<typename Number , int width>
VectorizedArray< Number, width > operator/ ( const VectorizedArray< Number, width > &  u,
const VectorizedArray< Number, width > &  v 
)
related

Division of two vectorized arrays with operator /.

Definition at line 3835 of file vectorization.h.

◆ operator+() [2/6]

template<typename Number , int width>
VectorizedArray< Number, width > operator+ ( const Number &  u,
const VectorizedArray< Number, width > &  v 
)
related

Addition of a scalar (expanded to a vectorized array with n_array_elements equal entries) and a vectorized array.

Definition at line 3850 of file vectorization.h.

◆ operator+() [3/6]

template<int width>
VectorizedArray< float, width > operator+ ( const double  u,
const VectorizedArray< float, width > &  v 
)
related

Addition of a scalar (expanded to a vectorized array with n_array_elements equal entries) and a vectorized array in case the scalar is a double (needed in order to be able to write simple code with constants that are usually double numbers).

Definition at line 3866 of file vectorization.h.

◆ operator+() [4/6]

template<typename Number , int width>
VectorizedArray< Number, width > operator+ ( const VectorizedArray< Number, width > &  v,
const Number &  u 
)
related

Addition of a vectorized array and a scalar (expanded to a vectorized array with n_array_elements equal entries).

Definition at line 3880 of file vectorization.h.

◆ operator+() [5/6]

template<int width>
VectorizedArray< float, width > operator+ ( const VectorizedArray< float, width > &  v,
const double  u 
)
related

Addition of a vectorized array and a scalar (expanded to a vectorized array with n_array_elements equal entries) in case the scalar is a double (needed in order to be able to write simple code with constants that are usually double numbers).

Definition at line 3895 of file vectorization.h.

◆ operator-() [2/6]

template<typename Number , int width>
VectorizedArray< Number, width > operator- ( const Number &  u,
const VectorizedArray< Number, width > &  v 
)
related

Subtraction of a vectorized array from a scalar (expanded to a vectorized array with n_array_elements equal entries).

Definition at line 3908 of file vectorization.h.

◆ operator-() [3/6]

template<int width>
VectorizedArray< float, width > operator- ( const double  u,
const VectorizedArray< float, width > &  v 
)
related

Subtraction of a vectorized array from a scalar (expanded to a vectorized array with n_array_elements equal entries) in case the scalar is a double (needed in order to be able to write simple code with constants that are usually double numbers).

Definition at line 3924 of file vectorization.h.

◆ operator-() [4/6]

template<typename Number , int width>
VectorizedArray< Number, width > operator- ( const VectorizedArray< Number, width > &  v,
const Number &  u 
)
related

Subtraction of a scalar (expanded to a vectorized array with n_array_elements equal entries) from a vectorized array.

Definition at line 3938 of file vectorization.h.

◆ operator-() [5/6]

template<int width>
VectorizedArray< float, width > operator- ( const VectorizedArray< float, width > &  v,
const double  u 
)
related

Subtraction of a scalar (expanded to a vectorized array with n_array_elements equal entries) from a vectorized array in case the scalar is a double (needed in order to be able to write simple code with constants that are usually double numbers).

Definition at line 3954 of file vectorization.h.

◆ operator*() [2/5]

template<typename Number , int width>
VectorizedArray< Number, width > operator* ( const Number &  u,
const VectorizedArray< Number, width > &  v 
)
related

Multiplication of a scalar (expanded to a vectorized array with n_array_elements equal entries) and a vectorized array.

Definition at line 3968 of file vectorization.h.

◆ operator*() [3/5]

template<int width>
VectorizedArray< float, width > operator* ( const double  u,
const VectorizedArray< float, width > &  v 
)
related

Multiplication of a scalar (expanded to a vectorized array with n_array_elements equal entries) and a vectorized array in case the scalar is a double (needed in order to be able to write simple code with constants that are usually double numbers).

Definition at line 3984 of file vectorization.h.

◆ operator*() [4/5]

template<typename Number , int width>
VectorizedArray< Number, width > operator* ( const VectorizedArray< Number, width > &  v,
const Number &  u 
)
related

Multiplication of a vectorized array and a scalar (expanded to a vectorized array with n_array_elements equal entries).

Definition at line 3998 of file vectorization.h.

◆ operator*() [5/5]

template<int width>
VectorizedArray< float, width > operator* ( const VectorizedArray< float, width > &  v,
const double  u 
)
related

Multiplication of a vectorized array and a scalar (expanded to a vectorized array with n_array_elements equal entries) in case the scalar is a double (needed in order to be able to write simple code with constants that are usually double numbers).

Definition at line 4013 of file vectorization.h.

◆ operator/() [2/5]

template<typename Number , int width>
VectorizedArray< Number, width > operator/ ( const Number &  u,
const VectorizedArray< Number, width > &  v 
)
related

Quotient between a scalar (expanded to a vectorized array with n_array_elements equal entries) and a vectorized array.

Definition at line 4026 of file vectorization.h.

◆ operator/() [3/5]

template<int width>
VectorizedArray< float, width > operator/ ( const double  u,
const VectorizedArray< float, width > &  v 
)
related

Quotient between a scalar (expanded to a vectorized array with n_array_elements equal entries) and a vectorized array in case the scalar is a double (needed in order to be able to write simple code with constants that are usually double numbers).

Definition at line 4042 of file vectorization.h.

◆ operator/() [4/5]

template<typename Number , int width>
VectorizedArray< Number, width > operator/ ( const VectorizedArray< Number, width > &  v,
const Number &  u 
)
related

Quotient between a vectorized array and a scalar (expanded to a vectorized array with n_array_elements equal entries).

Definition at line 4056 of file vectorization.h.

◆ operator/() [5/5]

template<int width>
VectorizedArray< float, width > operator/ ( const VectorizedArray< float, width > &  v,
const double  u 
)
related

Quotient between a vectorized array and a scalar (expanded to a vectorized array with n_array_elements equal entries) in case the scalar is a double (needed in order to be able to write simple code with constants that are usually double numbers).

Definition at line 4072 of file vectorization.h.

◆ operator+() [6/6]

template<typename Number , int width>
VectorizedArray< Number, width > operator+ ( const VectorizedArray< Number, width > &  u)
related

Unary operator + on a vectorized array.

Definition at line 4085 of file vectorization.h.

◆ operator-() [6/6]

template<typename Number , int width>
VectorizedArray< Number, width > operator- ( const VectorizedArray< Number, width > &  u)
related

Unary operator - on a vectorized array.

Definition at line 4097 of file vectorization.h.

◆ operator<<()

template<typename Number , int width>
std::ostream & operator<< ( std::ostream &  out,
const VectorizedArray< Number, width > &  p 
)
related

Output operator for vectorized array.

Definition at line 4111 of file vectorization.h.

◆ sin()

template<typename Number , int width>
VectorizedArray< Number, width > sin ( const ::VectorizedArray< Number, width > &  x)
related

Compute the sine of a vectorized data field. The result is returned as vectorized array in the form {sin(x[0]), sin(x[1]), ..., sin(x[n_array_elements-1])}.

Definition at line 4446 of file vectorization.h.

◆ cos()

template<typename Number , int width>
VectorizedArray< Number, width > cos ( const ::VectorizedArray< Number, width > &  x)
related

Compute the cosine of a vectorized data field. The result is returned as vectorized array in the form {cos(x[0]), cos(x[1]), ..., cos(x[n_array_elements-1])}.

Definition at line 4474 of file vectorization.h.

◆ tan()

template<typename Number , int width>
VectorizedArray< Number, width > tan ( const ::VectorizedArray< Number, width > &  x)
related

Compute the tangent of a vectorized data field. The result is returned as vectorized array in the form {tan(x[0]), tan(x[1]), ..., tan(x[n_array_elements-1])}.

Definition at line 4497 of file vectorization.h.

◆ exp()

template<typename Number , int width>
VectorizedArray< Number, width > exp ( const ::VectorizedArray< Number, width > &  x)
related

Compute the exponential of a vectorized data field. The result is returned as vectorized array in the form {exp(x[0]), exp(x[1]), ..., exp(x[n_array_elements-1])}.

Definition at line 4520 of file vectorization.h.

◆ log()

template<typename Number , int width>
VectorizedArray< Number, width > log ( const ::VectorizedArray< Number, width > &  x)
related

Compute the natural logarithm of a vectorized data field. The result is returned as vectorized array in the form {log(x[0]), log(x[1]), ..., log(x[n_array_elements-1])}.

Definition at line 4543 of file vectorization.h.

◆ sqrt()

template<typename Number , int width>
VectorizedArray< Number, width > sqrt ( const ::VectorizedArray< Number, width > &  x)
related

Compute the square root of a vectorized data field. The result is returned as vectorized array in the form {sqrt(x[0]), sqrt(x[1]), ..., sqrt(x[n_array_elements-1])}.

Definition at line 4566 of file vectorization.h.

◆ pow()

template<typename Number , int width>
VectorizedArray< Number, width > pow ( const ::VectorizedArray< Number, width > &  x,
const Number  p 
)
related

Raises the given number x to the power p for a vectorized data field. The result is returned as vectorized array in the form {pow(x[0],p), pow(x[1],p), ..., pow(x[n_array_elements-1],p)}.

Definition at line 4582 of file vectorization.h.

◆ abs()

template<typename Number , int width>
VectorizedArray< Number, width > abs ( const ::VectorizedArray< Number, width > &  x)
related

Compute the absolute value (modulus) of a vectorized data field. The result is returned as vectorized array in the form {abs(x[0]), abs(x[1]), ..., abs(x[n_array_elements-1])}.

Definition at line 4605 of file vectorization.h.

◆ max()

template<typename Number , int width>
VectorizedArray< Number, width > max ( const ::VectorizedArray< Number, width > &  x,
const ::VectorizedArray< Number, width > &  y 
)
related

Compute the componentwise maximum of two vectorized data fields. The result is returned as vectorized array in the form {max(x[0],y[0]), max(x[1],y[1]), ...}.

Definition at line 4621 of file vectorization.h.

◆ min()

template<typename Number , int width>
VectorizedArray< Number, width > min ( const ::VectorizedArray< Number, width > &  x,
const ::VectorizedArray< Number, width > &  y 
)
related

Compute the componentwise minimum of two vectorized data fields. The result is returned as vectorized array in the form {min(x[0],y[0]), min(x[1],y[1]), ...}.

Definition at line 4638 of file vectorization.h.

Member Data Documentation

◆ n_array_elements

template<typename Number, int width>
const unsigned int VectorizedArray< Number, width >::n_array_elements = 1
static

This gives the number of elements collected in this class. In the general case, there is only one element. Specializations use SIMD intrinsics and can work on multiple elements at the same time.

Definition at line 333 of file vectorization.h.

◆ data

template<typename Number, int width>
Number VectorizedArray< Number, width >::data

Actual data field. To be consistent with the standard layout type and to enable interaction with external SIMD functionality, this member is declared public.

Definition at line 553 of file vectorization.h.


The documentation for this class was generated from the following file: