Reference documentation for deal.II version Git 7baca85e57 20190823 17:29:05 0400

#include <deal.II/base/polynomial.h>
Public Member Functions  
HermiteLikeInterpolation (const unsigned int degree, const unsigned int index)  
Public Member Functions inherited from Polynomials::Polynomial< double >  
Polynomial (const std::vector< double > &coefficients)  
Polynomial (const unsigned int n)  
Polynomial (const std::vector< Point< 1 >> &lagrange_support_points, const unsigned int evaluation_point)  
Polynomial ()  
double  value (const double x) const 
void  value (const double x, std::vector< double > &values) const 
void  value (const double x, const unsigned int n_derivatives, double *values) const 
unsigned int  degree () const 
void  scale (const double factor) 
void  shift (const number2 offset) 
Polynomial< double >  derivative () const 
Polynomial< double >  primitive () const 
Polynomial< double > &  operator*= (const double s) 
Polynomial< double > &  operator*= (const Polynomial< double > &p) 
Polynomial< double > &  operator+= (const Polynomial< double > &p) 
Polynomial< double > &  operator= (const Polynomial< double > &p) 
bool  operator== (const Polynomial< double > &p) const 
void  print (std::ostream &out) const 
void  serialize (Archive &ar, const unsigned int version) 
Public Member Functions inherited from Subscriptor  
Subscriptor ()  
Subscriptor (const Subscriptor &)  
Subscriptor (Subscriptor &&) noexcept  
virtual  ~Subscriptor () 
Subscriptor &  operator= (const Subscriptor &) 
Subscriptor &  operator= (Subscriptor &&) noexcept 
void  subscribe (std::atomic< bool > *const validity, const std::string &identifier="") const 
void  unsubscribe (std::atomic< bool > *const validity, const std::string &identifier="") const 
unsigned int  n_subscriptions () const 
template<typename StreamType >  
void  list_subscribers (StreamType &stream) const 
void  list_subscribers () const 
template<class Archive >  
void  serialize (Archive &ar, const unsigned int version) 
Static Public Member Functions  
static std::vector< Polynomial< double > >  generate_complete_basis (const unsigned int degree) 
Static Public Member Functions inherited from Subscriptor  
static ::ExceptionBase &  ExcInUse (int arg1, std::string arg2, std::string arg3) 
static ::ExceptionBase &  ExcNoSubscriber (std::string arg1, std::string arg2) 
Additional Inherited Members  
Protected Member Functions inherited from Polynomials::Polynomial< double >  
void  transform_into_standard_form () 
Static Protected Member Functions inherited from Polynomials::Polynomial< double >  
static void  scale (std::vector< double > &coefficients, const double factor) 
static void  shift (std::vector< double > &coefficients, const number2 shift) 
static void  multiply (std::vector< double > &coefficients, const double factor) 
Protected Attributes inherited from Polynomials::Polynomial< double >  
std::vector< double >  coefficients 
bool  in_lagrange_product_form 
std::vector< double >  lagrange_support_points 
double  lagrange_weight 
Polynomials for a variant of Hermite polynomials with better condition number in the interpolation than the basis from HermiteInterpolation.
In analogy to the proper Hermite polynomials, this basis evaluates the first polynomial \(p_0\) to 1 at \(x=0\) and has both a zero value and zero derivative at \(x=1\). Likewise, the last polynomial \(p_n\) evaluates to 1 at \(x=1\) with a zero value and zero derivative at \(x=0\). The second polynomial \(p_1\) and the second to last polynomial \(p_{n1}\) represent the derivative degree of freedom at \(x=0\) and \(x=1\), respectively. They are zero at both the end points \(x=0, x=1\) and have zero derivative at the opposite end, \(p_1'(1)=0\) and \(p_{n1}'(0)=0\). As opposed to the original Hermite polynomials, \(p_0\) does not have zero derivative at \(x=0\). The additional degree of freedom is used to make \(p_0\) and \(p_1\) orthogonal, which for \(n=3\) results in a root at \(x=\frac{2}{7}\) for \(p_0\) and at \(x=\frac{5}{7}\) for \(p_n\), respectively. Furthermore, the extension of these polynomials to higher degrees \(n>3\) is constructed by adding additional nodes inside the unit interval, again ensuring better conditioning. The nodes are computed as the roots of the Jacobi polynomials for \(\alpha=\beta=4\), which are orthogonal against the square of the generating function \(x^2(1x)^2\) with the Hermite property. Then, these polynomials are constructed in the usual way as Lagrange polynomials with double roots at \(x=0\) and \(x=1\). For example with \(n=4\), all of \(p_0, p_1, p_3, p_4\) get an additional root at \(x=0.5\) through the factor \((x0.5)\). In summary, this basis is dominated by nodal contributions, but it is not a nodal one because the second and second to last polynomials that are nonnodal, and due to the presence of double nodes in \(x=0\) and \(x=1\). The weights of the basis functions are set such that the sum of all polynomials with unit weight represents the constant function 1, similarly to Lagrange polynomials.
The basis only contains Hermite information for degree>=3
, but it is also implemented for degrees between 0 and two. For the linear case, the usual hat functions are implemented, whereas the polynomials for degree=2
are \(p_0(x)=(1x)^2\), \(p_1(x)=2x(x1)\), and \(p_2(x)=x^2\), in accordance with the construction principle for degree 3.
These two relaxations improve the condition number of the mass matrix (i.e., interpolation) significantly, as can be seen from the following table:
Condition number mass matrix  

degree  HermiteInterpolation  HermiteLikeInterpolation 
n=3  1057  17.18 
n=4  6580  16.83 
n=5  1.875e+04  15.99 
n=6  6.033e+04  16.34 
n=10  9.756e+05  20.70 
n=15  9.431e+06  27.91 
n=25  2.220e+08  43.54 
n=35  2.109e+09  59.51 
This polynomial inherits the advantageous property of Hermite polynomials where only two functions have value and/or derivative nonzero on a face advantageous for discontinuous Galerkin methods but gives better condition numbers of interpolation, which improves the performance of some iterative schemes like conjugate gradients with pointJacobi. This polynomial is used in FE_DGQHermite.
Definition at line 705 of file polynomial.h.
Polynomials::HermiteLikeInterpolation::HermiteLikeInterpolation  (  const unsigned int  degree, 
const unsigned int  index  
) 
Constructor for the polynomial with index index
within the set up polynomials of degree degree
.
Definition at line 1296 of file polynomial.cc.

static 
Return the polynomials with index 0
up to degree+1
in a space of degree up to degree
.
Definition at line 1526 of file polynomial.cc.