Reference documentation for deal.II version Git bef661081b 2019-09-23 12:55:27 -0400
\(\newcommand{\dealcoloneq}{\mathrel{\vcenter{:}}=}\)
Public Attributes | List of all members
FE_ABF< dim >::InternalData Class Reference
Inheritance diagram for FE_ABF< dim >::InternalData:
[legend]

Public Attributes

std::vector< std::vector< Tensor< 1, dim > > > shape_values
 
std::vector< std::vector< Tensor< 2, dim > > > shape_gradients
 
- Public Attributes inherited from FiniteElement< dim, spacedim >::InternalDataBase
UpdateFlags update_each
 

Additional Inherited Members

- Public Member Functions inherited from FiniteElement< dim, spacedim >::InternalDataBase
 InternalDataBase ()
 
virtual ~InternalDataBase ()=default
 
 InternalDataBase (const InternalDataBase &)=delete
 
virtual std::size_t memory_consumption () const
 

Detailed Description

template<int dim>
class FE_ABF< dim >::InternalData

Fields of cell-independent data.

For information about the general purpose of this class, see the documentation of the base class.

Definition at line 186 of file fe_abf.h.

Member Data Documentation

◆ shape_values

template<int dim>
std::vector<std::vector<Tensor<1, dim> > > FE_ABF< dim >::InternalData::shape_values

Array with shape function values in quadrature points. There is one row for each shape function, containing values for each quadrature point. Since the shape functions are vector-valued (with as many components as there are space dimensions), the value is a tensor.

In this array, we store the values of the shape function in the quadrature points on the unit cell. The transformation to the real space cell is then simply done by multiplication with the Jacobian of the mapping.

Definition at line 200 of file fe_abf.h.

◆ shape_gradients

template<int dim>
std::vector<std::vector<Tensor<2, dim> > > FE_ABF< dim >::InternalData::shape_gradients

Array with shape function gradients in quadrature points. There is one row for each shape function, containing values for each quadrature point.

We store the gradients in the quadrature points on the unit cell. We then only have to apply the transformation (which is a matrix-vector multiplication) when visiting an actual cell.

Definition at line 211 of file fe_abf.h.


The documentation for this class was generated from the following file: