Reference documentation for deal.II version Git 65001fc 2018-06-18 17:06:20 -0400
Public Member Functions | Static Public Member Functions | Private Attributes | List of all members
PolynomialsBDM< dim > Class Template Reference

#include <deal.II/base/polynomials_bdm.h>

Public Member Functions

 PolynomialsBDM (const unsigned int k)
 
void compute (const Point< dim > &unit_point, std::vector< Tensor< 1, dim >> &values, std::vector< Tensor< 2, dim >> &grads, std::vector< Tensor< 3, dim >> &grad_grads, std::vector< Tensor< 4, dim >> &third_derivatives, std::vector< Tensor< 5, dim >> &fourth_derivatives) const
 
unsigned int n () const
 
unsigned int degree () const
 
std::string name () const
 

Static Public Member Functions

static unsigned int compute_n_pols (unsigned int degree)
 

Private Attributes

const PolynomialSpace< dim > polynomial_space
 
std::vector< Polynomials::Polynomial< double > > monomials
 
unsigned int n_pols
 
Threads::Mutex mutex
 
std::vector< double > p_values
 
std::vector< Tensor< 1, dim > > p_grads
 
std::vector< Tensor< 2, dim > > p_grad_grads
 
std::vector< Tensor< 3, dim > > p_third_derivatives
 
std::vector< Tensor< 4, dim > > p_fourth_derivatives
 

Detailed Description

template<int dim>
class PolynomialsBDM< dim >

This class implements the Hdiv-conforming, vector-valued Brezzi-Douglas-Marini ( BDM ) polynomials described in Brezzi and Fortin's Mixed and Hybrid Finite Element Methods (refer to pages 119 - 124).

The BDM polynomial space contain the entire \((P_{k})^{n}\) space (constructed with PolynomialSpace Legendre polynomials) as well as part of \((P_{k+1})^{n}\) (ie. \((P_{k})^{n} \subset BDM_{k} \subset (P_{k+1})^{n}\)). Furthermore, \(BDM_{k}\) elements are designed so that \(\nabla \cdot q \in P_{k-1} (K)\) and \(q \cdot n |_{e_{i}} \in P_{k}(e_{i})\). More details of two and three dimensional \(BDM_{k}\) elements are given below.

In 2D:

\( BDM_{k} = \{\mathbf{q} | \mathbf{q} = p_{k} (x,y) + r \; \text{curl} (x^{k+1}y) + s \; \text{curl} (xy^{k+1}), p_{k} \in (P_{k})^{2} \}\).

Note: the curl of a scalar function is given by \(\text{curl}(f(x,y)) = \begin{pmatrix} f_{y}(x,y) \\ -f_{x}(x,y) \end{pmatrix}\).

The basis used to construct the \(BDM_{1}\) shape functions is

\begin{align*} \phi_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \phi_1 = \begin{pmatrix} -\sqrt{3}+2\sqrt{3}x \\ 0 \end{pmatrix}, \phi_2 = \begin{pmatrix} -\sqrt{3}+2\sqrt{3}y \\ 0 \end{pmatrix}, \phi_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \phi_4 = \begin{pmatrix} 0 \\ -\sqrt{3}+2\sqrt{3}x \end{pmatrix}, \phi_5 = \begin{pmatrix} 0 \\ -\sqrt{3}+2\sqrt{3}y \end{pmatrix}, \phi_6 = \begin{pmatrix} x^2 \\ -2xy \end{pmatrix}, \phi_7 = \begin{pmatrix} 2xy \\ -y^2 \end{pmatrix}. \end{align*}

The dimension of the \(BDM_{k}\) space is \((k+1)(k+2)+2\), with \(k+1\) unknowns per edge and \(k(k-1)\) interior unknowns.

In 3D:

\( BDM_{k} = \{\mathbf{q} | \mathbf{q} = p_{k} (x,y,z) + \sum_{i=0}^{k} ( r_{i} \; \text{curl} \begin{pmatrix} 0\\0\\xy^{i+1}z^{k-i} \end{pmatrix} + s_{i} \; \text{curl} \begin{pmatrix} yz^{i+1}x^{k-i}\\0\\0 \end{pmatrix} + t_{i} \; \text{curl} \begin{pmatrix}0\\zx^{i+1}y^{k-i}\\0\end{pmatrix}) , p_{k} \in (P_{k})^{3} \}\).

Note: the 3D description of \(BDM_{k}\) is not unique. See Mixed and Hybrid Finite Element Methods page 122 for an alternative definition.

The dimension of the \(BDM_{k}\) space is \(\dfrac{(k+1)(k+2)(k+3)}{2}+3(k+1)\), with \(\dfrac{(k+1)(k+2)}{2}\) unknowns per face and \(\dfrac{(k-1)k(k+1)}{2}\) interior unknowns.

Author
Guido Kanschat
Date
2003, 2005, 2009

Definition at line 101 of file polynomials_bdm.h.

Constructor & Destructor Documentation

template<int dim>
PolynomialsBDM< dim >::PolynomialsBDM ( const unsigned int  k)

Constructor. Creates all basis functions for BDM polynomials of given degree.

  • k: the degree of the BDM-space, which is the degree of the largest complete polynomial space Pk contained in the BDM- space.

Definition at line 29 of file polynomials_bdm.cc.

Member Function Documentation

template<int dim>
void PolynomialsBDM< dim >::compute ( const Point< dim > &  unit_point,
std::vector< Tensor< 1, dim >> &  values,
std::vector< Tensor< 2, dim >> &  grads,
std::vector< Tensor< 3, dim >> &  grad_grads,
std::vector< Tensor< 4, dim >> &  third_derivatives,
std::vector< Tensor< 5, dim >> &  fourth_derivatives 
) const

Compute the value and the first and second derivatives of each BDM polynomial at unit_point.

The size of the vectors must either be zero or equal n(). In the first case, the function will not compute these values.

If you need values or derivatives of all tensor product polynomials then use this function, rather than using any of the compute_value, compute_grad or compute_grad_grad functions, see below, in a loop over all tensor product polynomials.

Definition at line 55 of file polynomials_bdm.cc.

template<int dim>
unsigned int PolynomialsBDM< dim >::n ( ) const
inline

Return the number of BDM polynomials.

Definition at line 213 of file polynomials_bdm.h.

template<int dim>
unsigned int PolynomialsBDM< dim >::degree ( ) const
inline

Return the degree of the BDM space, which is one less than the highest polynomial degree.

Definition at line 221 of file polynomials_bdm.h.

template<int dim>
std::string PolynomialsBDM< dim >::name ( ) const
inline

Return the name of the space, which is BDM.

Definition at line 229 of file polynomials_bdm.h.

template<int dim>
unsigned int PolynomialsBDM< dim >::compute_n_pols ( unsigned int  degree)
static

Return the number of polynomials in the space BDM(degree) without requiring to build an object of PolynomialsBDM. This is required by the FiniteElement classes.

Definition at line 431 of file polynomials_bdm.cc.

Member Data Documentation

template<int dim>
const PolynomialSpace<dim> PolynomialsBDM< dim >::polynomial_space
private

An object representing the polynomial space used here. The constructor fills this with the monomial basis.

Definition at line 166 of file polynomials_bdm.h.

template<int dim>
std::vector<Polynomials::Polynomial<double> > PolynomialsBDM< dim >::monomials
private

Storage for monomials. In 2D, this is just the polynomial of order k. In 3D, we need all polynomials from degree zero to k.

Definition at line 172 of file polynomials_bdm.h.

template<int dim>
unsigned int PolynomialsBDM< dim >::n_pols
private

Number of BDM polynomials.

Definition at line 177 of file polynomials_bdm.h.

template<int dim>
Threads::Mutex PolynomialsBDM< dim >::mutex
mutableprivate

A mutex that guards the following scratch arrays.

Definition at line 182 of file polynomials_bdm.h.

template<int dim>
std::vector<double> PolynomialsBDM< dim >::p_values
mutableprivate

Auxiliary memory.

Definition at line 187 of file polynomials_bdm.h.

template<int dim>
std::vector<Tensor<1, dim> > PolynomialsBDM< dim >::p_grads
mutableprivate

Auxiliary memory.

Definition at line 192 of file polynomials_bdm.h.

template<int dim>
std::vector<Tensor<2, dim> > PolynomialsBDM< dim >::p_grad_grads
mutableprivate

Auxiliary memory.

Definition at line 197 of file polynomials_bdm.h.

template<int dim>
std::vector<Tensor<3, dim> > PolynomialsBDM< dim >::p_third_derivatives
mutableprivate

Auxiliary memory.

Definition at line 202 of file polynomials_bdm.h.

template<int dim>
std::vector<Tensor<4, dim> > PolynomialsBDM< dim >::p_fourth_derivatives
mutableprivate

Auxiliary memory.

Definition at line 207 of file polynomials_bdm.h.


The documentation for this class was generated from the following files: