On a Nonlocal Finite Element Model for Mode-III Brittle Fracture with Surface-Tension Excess Property

S. M. Mallikarjunaiah

Department of Mathematics
Texas A&M University
College Station, TX
Overview

1. Notation and Preliminaries
2. Mode-III Fracture Model with Surface-Tension Excess Property
3. Reformulation of Jump Momentum Balance Boundary Condition
4. Nonlocal Finite Element Method
5. Numerical Results
6. References
Let \mathbf{X} be any arbitrary point in the reference configuration and \mathbf{x} denotes the corresponding point in the deformed configuration.
Notation and preliminaries

- Let \(\mathbf{X} \) be any arbitrary point in the reference configuration and \(\mathbf{x} \) denotes the corresponding point in the deformed configuration.
- Then the mapping \(\mathbf{x} = \mathbf{f}(\mathbf{X}) \) represents the motion of the body.
Notation and preliminaries

- Let \mathbf{X} be any arbitrary point in the reference configuration and \mathbf{x} denotes the corresponding point in the deformed configuration.
- Then the mapping $\mathbf{x} = f(\mathbf{X})$ represents the motion of the body.
- $\mathbf{u} := \mathbf{x} - \mathbf{X}$
Notation and preliminaries

- Let \(X \) be any arbitrary point in the reference configuration and \(x \) denotes the corresponding point in the deformed configuration.
- Then the mapping \(x = f(X) \) represents the motion of the body.
- \(u := x - X \)
- \(F := \frac{\partial f}{\partial X} = I + \nabla u \)
Let \mathbf{X} be any arbitrary point in the reference configuration and \mathbf{x} denotes the corresponding point in the deformed configuration. Then the mapping $\mathbf{x} = f(\mathbf{X})$ represents the motion of the body.

- $\mathbf{u} := \mathbf{x} - \mathbf{X}$
- $\mathbf{F} := \frac{\partial f}{\partial \mathbf{X}} = \mathbf{I} + \nabla \mathbf{u}$
- $\mathbf{B} := \mathbf{FF}^T$, and $\mathbf{C} := \mathbf{F}^T \mathbf{F}$
Notation and preliminaries

- Let X be any arbitrary point in the reference configuration and x denotes the corresponding point in the deformed configuration.
- Then the mapping $x = f(X)$ represents the motion of the body.
- $u := x - X$
- $F := \frac{\partial f}{\partial X} = I + \nabla u$
- $B := FF^T$, and $C := F^TF$
- $E = \frac{1}{2}(C - I)$
Let \mathbf{X} be any arbitrary point in the reference configuration and \mathbf{x} denotes the corresponding point in the deformed configuration. Then the mapping $\mathbf{x} = f(\mathbf{X})$ represents the motion of the body.

- $\mathbf{u} := \mathbf{x} - \mathbf{X}$
- $\mathbf{F} := \frac{\partial f}{\partial \mathbf{X}} = \mathbf{I} + \nabla \mathbf{u}$
- $\mathbf{B} := \mathbf{F}\mathbf{F}^T$, and $\mathbf{C} := \mathbf{F}^T\mathbf{F}$
- $\mathbf{E} = \frac{1}{2}(\mathbf{C} - \mathbf{I})$
- $\mathbf{\epsilon} = \frac{1}{2} \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right)$
Let X be any arbitrary point in the reference configuration and x denotes the corresponding point in the deformed configuration. Then the mapping $x = f(X)$ represents the motion of the body.

$u := x - X$

$F := \frac{\partial f}{\partial X} = I + \nabla u$

$B := FF^T$, and $C := F^TF$

$E = \frac{1}{2}(C - I)$

$\epsilon = \frac{1}{2} \left(\nabla u + \nabla u^T \right)$

If we linearize using the assumption of displacement gradients are small, we can approximate E and ϵ. Then there is no distinction between reference and deformed configuration.
Mode-III Fracture

The Mode-III fracture (or anti-plane shear fracture):
- The fracture surfaces slide relative to each other skew-symmetrically with shear stress acting as shown in the figure.
- Displacement:
 - $u_1 = 0$ and $u_2 = 0$
 - $u_3 = u_3(x_1, x_2)$
The classical Linearized Elastic Fracture Mechanics (LEFM) model has two well known inconsistencies:
The classical Linearized Elastic Fracture Mechanics (LEFM) model has two well-known inconsistencies:

- It predicts singular crack-tip strains and stresses.
The classical Linearized Elastic Fracture Mechanics (LEFM) model has two well known inconsistencies:

- It predict singular crack-tip strains and stresses.
- Also it predicts an elliptical crack-surface opening displacement with a blunt crack-tip.
The classical Linearized Elastic Fracture Mechanics (LEFM) model has two well-known inconsistencies:

- It predicts singular crack-tip strains and stresses.
- Also, it predicts an elliptical crack-surface opening displacement with a blunt crack-tip.

Thus, several remedies have been attempted: appealing to a non-linear theory of elasticity, the introduction of a cohesive zone around the crack tip, and non-local theories.
The problem studied here is the straight, static, anti-plane shear crack, lying on $|x_1| < a$, $x_2 = 0$ in an infinite, isotropic, linear elastic body subjected to uniform far-field anti-plane shear loading (σ_{23}^∞). The stress-strain relations are:

$$\tau_{23} = \mu \frac{\partial u_3}{\partial x_2} \quad \text{and} \quad \tau_{13} = \mu \frac{\partial u_3}{\partial x_1},$$

where τ_{23} and τ_{13} are the relevant stress components, and u_3 denotes the $z-$displacement.

Figure: Physical description of the problem.
To derive the governing equations for this problem, we follow the study of Sendova and Walton1.

Mode-III fracture problem formulation

To derive the governing equations for this problem, we follow the study of Sendova and Walton\(^1\).

The equilibrium equation, without the body force term, is the Laplace equation for \(u_3 \)

\[-\Delta u_3 = 0. \]

Mode-III fracture problem formulation

To derive the governing equations for this problem, we follow the study of Sendova and Walton1.

The equilibrium equation, without the body force term, is the Laplace equation for u_3

$$-\Delta u_3 = 0.$$

Then we consider a surface tension model which depend on (linearized) curvature of the out-of-plane displacement by:

$$\gamma = \gamma_0 + \gamma_1 u_{3,11}(x_1, 0),$$

where γ_0 and γ_1 are surface tension parameters.

Mode-III fracture problem formulation

To derive the governing equations for this problem, we follow the study of Sendova and Walton\(^1\).

The equilibrium equation, without the body force term, is the Laplace equation for \(u_3\)

\[-\Delta u_3 = 0.\]

Then we consider a surface tension model which depend on (linearized) curvature of the out-of-plane displacement by:

\[\gamma = \gamma_0 + \gamma_1 u_{3,11}(x_1, 0),\]

where \(\gamma_0\) and \(\gamma_1\) are surface tension parameters. Then the resulting boundary condition on the upper crack-surface is give by:

\[u_{3,2}(x_1, 0) = -\gamma_1 u_{3,111}(x_1, 0)\]

Mode-III fracture BVP

\[-\Delta u_3(x_1, x_2) = 0, \quad \text{in} \quad Q\]

Boundary conditions:

- on \(\Gamma_0\) \(u_{3,2}(x_1, 0) = -\sigma_{23}^\infty - \gamma_1 u_{3,111}\),
- on \(\Gamma_1\) \(u_3 = 0\),
- on \(\Gamma_2\) \(\vec{n} \cdot \nabla u_3 = 0\),
- on \(\Gamma_3\) \(\vec{n} \cdot \nabla u_3 = 0\),
- on \(\Gamma_4\) \(\vec{n} \cdot \nabla u_3 = 0\).

Figure: Finite computational domain \(Q\).
Appealing to the BVP, the weak formulation for the problem on hand is found by integrating the PDE against a test function \(v \) over \(\Omega \). This yields

\[
\int_Q \nabla v \cdot \nabla u_3 \, dQ - \int_{\partial Q} v \left(\vec{n} \cdot \nabla u_3 \right) \, d\partial Q = 0.
\]
Appealing to the BVP, the weak formulation for the problem on hand is found by integrating the PDE against a test function v over Ω. This yields

$$\int_Q \nabla v \cdot \nabla u_3 \, dQ - \int_{\partial Q} v (\vec{n} \cdot \nabla u_3) \, d\partial Q = 0.$$

There is no contribution from the second term on the left-hand side of the above equation except over the crack-surface Γ_0.
Appealing to the BVP, the weak formulation for the problem on hand is found by integrating the PDE against a test function \(v \) over \(\Omega \). This yields

\[
\int_Q \nabla v \cdot \nabla u_3 \, dQ - \int_{\partial Q} \nu \, (\vec{n} \cdot \nabla u_3) \, d\partial Q = 0.
\]

There is no contribution from the second term on the left-hand side of the above equation except over the crack-surface \(\Gamma_0 \). Therefore the resulting weak formulation takes the form

\[
\int_Q \nabla u_3 \cdot \nabla v \, dQ - \int_{\Gamma_0} \nu \, u_{3,2}(x_1,0) \, dx_1 = 0,
\]
We consider the crack-surface boundary condition and rearrange the equation to obtain

\[-u_{3,111}(x_1, 0) = \frac{1}{\gamma_1} \left[u_{3,2}(x_1, 0) + \sigma_{23}^\infty \right] \text{ on } \Gamma_0.\]
Reformulation of the Crack-Face Boundary Condition

We consider the crack-surface boundary condition and rearrange the equation to obtain

\[-u_{3,111}(x_1, 0) = \frac{1}{\gamma_1} \left[u_{3,2}(x_1, 0) + \sigma_{23}^\infty\right] \text{ on } \Gamma_0.\]

\[\mathcal{L}\{u_{3,1}\} = \frac{1}{\gamma_1} \left[u_{3,2}(x_1, 0) + \sigma_{23}^\infty\right],\]
We consider the crack-surface boundary condition and rearrange the equation to obtain

\[-u_{3,111}(x_1, 0) = \frac{1}{\gamma_1} \left[u_{3,2}(x_1, 0) + \sigma_{23}^\infty\right] \text{ on } \Gamma_0.

\[\mathcal{L}\{u_{3,1}\} = \frac{1}{\gamma_1} \left[u_{3,2}(x_1, 0) + \sigma_{23}^\infty\right],\]

- \(u_3(x_1, x_2)\) is an odd function in \(x_2\), therefore \(u_{3,1}(0, 0) = 0\).
We consider the crack-surface boundary condition and rearrange the equation to obtain

\[-u_{3,111}(x_1,0) = \frac{1}{\gamma_1} \left[u_{3,2}(x_1,0) + \sigma_{23}^\infty \right] \text{ on } \Gamma_0.\]

\[\mathcal{L}\{u_{3,1}\} = \frac{1}{\gamma_1} \left[u_{3,2}(x_1,0) + \sigma_{23}^\infty \right],\]

- \(u_3(x_1, x_2)\) is an odd function in \(x_2\), therefore \(u_{3,1}(0,0) = 0\).
- Also regularization on \(\Gamma_0 \cup \Gamma_1\) requires \(u_{3,1}(1,0) = 0\).
Reformulation of the Crack-Face Boundary Condition

Then the solution to the two point boundary value problem is given by

\[u_{3,1}(x, 0) = \mathcal{G}\{f\}(x) := \int_0^1 G(x, q)f(q)\,dq. \]
Reformulation of the Crack-Face Boundary Condition

Then the solution to the two point boundary value problem is given by

\[u_{3,1}(x, 0) = G\{f\}(x) := \int_0^1 G(x, q)f(q)dq. \]

\[
 u_{3,1}(x, 0) = \frac{1}{\gamma_1} \int_0^1 G(x, q)[u_{3,2}(q, 0) + \sigma_{23}^\infty] \, dq \\
 = \frac{1}{\gamma_1} \int_0^1 G(x, q) \, u_{3,2}(q, 0) \, dq - \frac{\sigma_{23}^\infty}{2\gamma_1} x(1 - x).
\]
Reformulation of the Crack-Face Boundary Condition

Then the solution to the two point boundary value problem is given by

\[u_{3,1}(x, 0) = \mathcal{G}\{f\}(x) := \int_0^1 G(x, q)f(q) \, dq. \]

\[u_{3,1}(x, 0) = \frac{1}{\gamma_1} \int_0^1 G(x, q)[u_{3,2}(q, 0) + \sigma_{23}^{\infty}] \, dq \]

\[= \frac{1}{\gamma_1} \int_0^1 G(x, q) u_{3,2}(q, 0) \, dq - \frac{\sigma_{23}^{\infty}}{2\gamma_1} x(1 - x). \]

Now, we know that the Hilbert transform gives the Dirichlet-to-Neumann map, ie

\[u_{3,2}(x, 0^+) = \mathcal{H}\{u_{3,1}\} \]

\[= \frac{1}{\pi} \int_{-\infty}^{\infty} u_{3,1}(q, 0^+) \frac{dq}{q - x} \]

\[= \frac{1}{\pi} \int_0^1 u_{3,1}(q, 0^+) \frac{2q}{q^2 - x^2} \, dq, \]
Reformulation of the Crack-Face Boundary Condition

\[u_{3,2}(x, 0) = \frac{1}{\pi \gamma_1} \int_0^1 k(x, q) u_{3,2}(q, 0) dq - \frac{\sigma_{23}^\infty}{2\pi \gamma_1} g(x), \quad \text{on} \quad \Gamma_0, \]
Reformulation of the Crack-Face Boundary Condition

\[
u_{3,2}(x, 0) = \frac{1}{\pi \gamma_1} \int_0^1 k(x, q) u_{3,2}(q, 0) \, dq - \frac{\sigma_{23}^\infty}{2\pi \gamma_1} g(x), \quad \text{on} \quad \Gamma_0,
\]

where \(k(x, q) \) and \(g(x) \) are given by:

\[
k(x, q) = (q + x) \ln (q + x) + (q - x) \ln |q - x| \\
- q(1 + x) \ln (1 + x) - q(1 - x) \ln |1 - x|
\]

\[
g(x) = 1 - x(1 + x) \ln \left(\frac{1 + x}{x} \right) + x(1 - x) \ln \left| \frac{1 - x}{x} \right|
\]
Applying this result to the earlier *Weak-Form* yields the final weak form

\[
\int_Q \nabla u_3 \cdot \nabla v + \frac{1}{\pi \gamma_1} \int_0^1 v(x, 0) \int_0^1 k(x, q) u_{3,2}(q, 0) \, dq \, dx = \frac{\sigma_{23}}{2\pi \gamma_1} \int_0^1 v(x, 0) g(x) \, dx.
\]

Note that this weak form has no higher-order derivatives, thus the standard FEM can now be applied.
Parameter Determination

Theorem

The Fredholm integral equation

\[\gamma_1 u(x) - K[u](x) = -\frac{\sigma^\infty_{23}}{2\pi} g(x), \quad \text{for} \quad 0 \leq x \leq 1, \]

where \(K \) is the integral operator

\[K[\psi](x) = \frac{1}{\pi} \int_0^1 k(x, q) \psi(q) \, dq, \]

has a unique, continuous solution for all but countably many values of \(\gamma_1 \).

Where \(k(x, q) \) is given by:

\[k(x, q) = (q + x) \ln (q + x) + (q - x) \ln |q - x| \]
\[- q(1 + x) \ln (1 + x) - q(1 - x) \ln |1 - x| \]
Numerical Results: Displacement
Numerical Results: Crack-Face Displacement

![Graph showing Crack-Face Displacement](image)

- **Displacement u_3**
- **Nondimensionalized position (x/l) on the crack face**

Legend:
- Red square: Nonlocal
- Blue circle: Offline

9×10^{-5}
Numerical Results: Near-Tip Stress τ_{23}

\begin{itemize}
 \item $\frac{1}{\sqrt{1 - x}}$
 \item LEFM
 \item Surface mechanics model
\end{itemize}

Stress component τ_{23}

Nondimensionalized position (x/l) outside the crack-tip
Numerical Results: Near-Tip Strain ε_{23}

- $1/\sqrt{(1 - x)}$
- LEFM
- Surface mechanics model

Strain component ε_{23} vs. Nondimensionalized position (x/l) outside the crack-tip.
Numerical Results: Crack-Face Displacement

![Graph showing crack-face displacement](image)

- $\gamma_1 = 0.0$
- $\gamma_1 = 0.5$
- $\gamma_1 = 1.0$
- $\gamma_1 = 4.0$

Displacement u_3

Nondimensionalized position (x/l) on the crack face
Numerical Results: Near-Tip Stress τ_{23}

![Graph showing displacement u_3 versus nondimensionalized position (x/l) on the crack face for different values of σ_{23}]
Numerical Results: Near-Tip Stress τ_{23}

![Graph showing stress component τ_{23} vs. nondimensionalized position (x/l) outside the crack-tip for different γ_1.](image)
Numerical Results: Near-Tip Stress τ_{23}
We have successfully demonstrated an approach for the direct numerical implementation of the surface tension class of continuum-surface methods using FEM in the case of mode-III fracture.
We have successfully demonstrated an approach for the direct numerical implementation of the surface tension class of continuum-surface methods using FEM in the case of mode-III fracture.

We showed that the two FEM implementations agree well with each other. In particular, the model predicts bounded crack-tip stresses (also strains) and a cusp-like crack opening profile with a sharp crack-tip.
We have successfully demonstrated an approach for the direct numerical implementation of the surface tension class of continuum-surface methods using FEM in the case of mode-III fracture.

We showed that the two FEM implementations agree well with each other. In particular, the model predicts bounded crack-tip stresses (also strains) and a cusp-like crack opening profile with a sharp crack-tip.

We are currently developing a corresponding implementation of both pure mode-I and mixed-mode (combination of mode-I and mode-II) fracture.
References

W. Bangerth, R. Hartmann and G. Kanschat.
deal.II – a General Purpose Object Oriented Finite Element Library,

W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, T. D. Young.
The deal.II Library, Version 8.1, arXiv preprint,

T. Sendova and J. R. Walton.
A New Approach to the Modeling & Analysis of Fracture through an Extension of Continuum Mechanics to the Nanoscale.

L. Ferguson, S. M. Mallikarjunaiah and J. R. Walton.
Numerical simulation of mode-III fracture incorporating interfacial mechanics.

J. R. Walton.
A note on fracture models incorporating surface elasticity.
THANK YOU