|
| EvaluatorTensorProduct (const AlignedVector< Number2 > &shape_values, const AlignedVector< Number2 > &shape_gradients, const AlignedVector< Number2 > &shape_hessians, const unsigned int dummy1=0, const unsigned int dummy2=0) |
|
template<int direction, bool contract_over_rows, bool add> |
void | values (const Number in[], Number out[]) const |
|
template<int direction, bool contract_over_rows, bool add> |
void | gradients (const Number in[], Number out[]) const |
|
template<int direction, bool contract_over_rows, bool add> |
void | hessians (const Number in[], Number out[]) const |
|
template<int dim, int n_rows, int n_columns, typename Number, typename Number2>
struct internal::EvaluatorTensorProduct< evaluate_symmetric, dim, n_rows, n_columns, Number, Number2 >
Internal evaluator for 1d-3d shape function using the tensor product form of the basis functions. This class specializes the general application of tensor-product based elements for "symmetric" finite elements, i.e., when the shape functions are symmetric about 0.5 and the quadrature points are, too.
- Template Parameters
-
dim | Space dimension in which this class is applied |
n_rows | Number of rows in the transformation matrix, which corresponds to the number of 1d shape functions in the usual tensor contraction setting |
n_columns | Number of columns in the transformation matrix, which corresponds to the number of 1d shape functions in the usual tensor contraction setting |
Number | Abstract number type for input and output arrays |
Number2 | Abstract number type for coefficient arrays (defaults to same type as the input/output arrays); must implement operator* with Number and produce Number as an output to be a valid type |
Definition at line 1041 of file tensor_product_kernels.h.