deal.II version GIT relicensing-2233-g9bd70d8389 2024-12-08 16:10:00+00:00
\(\newcommand{\dealvcentcolon}{\mathrel{\mathop{:}}}\) \(\newcommand{\dealcoloneq}{\dealvcentcolon\mathrel{\mkern-1.2mu}=}\) \(\newcommand{\jump}[1]{\left[\!\left[ #1 \right]\!\right]}\) \(\newcommand{\average}[1]{\left\{\!\left\{ #1 \right\}\!\right\}}\)
Loading...
Searching...
No Matches
Public Member Functions | Public Attributes | List of all members
internal::EigenvalueAlgorithmAdditionalData< PreconditionerType > Struct Template Reference

#include <deal.II/lac/precondition.h>

Inheritance diagram for internal::EigenvalueAlgorithmAdditionalData< PreconditionerType >:
Inheritance graph
[legend]

Public Member Functions

 EigenvalueAlgorithmAdditionalData (const double smoothing_range, const unsigned int eig_cg_n_iterations, const double eig_cg_residual, const double max_eigenvalue, const EigenvalueAlgorithm eigenvalue_algorithm)
 
EigenvalueAlgorithmAdditionalData< PreconditionerType > & operator= (const EigenvalueAlgorithmAdditionalData< PreconditionerType > &other_data)
 

Public Attributes

double smoothing_range
 
unsigned int eig_cg_n_iterations
 
double eig_cg_residual
 
double max_eigenvalue
 
::AffineConstraints< double > constraints
 
EigenvalueAlgorithm eigenvalue_algorithm
 
std::shared_ptr< PreconditionerType > preconditioner
 

Detailed Description

template<typename PreconditionerType>
struct internal::EigenvalueAlgorithmAdditionalData< PreconditionerType >

Base class for PreconditionRelaxation::AdditionalData and PreconditionChebyshev::AdditionalData with relevant information for estimating the eigenvalues.

Definition at line 127 of file precondition.h.

Constructor & Destructor Documentation

◆ EigenvalueAlgorithmAdditionalData()

template<typename PreconditionerType >
internal::EigenvalueAlgorithmAdditionalData< PreconditionerType >::EigenvalueAlgorithmAdditionalData ( const double  smoothing_range,
const unsigned int  eig_cg_n_iterations,
const double  eig_cg_residual,
const double  max_eigenvalue,
const EigenvalueAlgorithm  eigenvalue_algorithm 
)

Constructor.

Member Function Documentation

◆ operator=()

template<typename PreconditionerType >
EigenvalueAlgorithmAdditionalData< PreconditionerType > & internal::EigenvalueAlgorithmAdditionalData< PreconditionerType >::operator= ( const EigenvalueAlgorithmAdditionalData< PreconditionerType > &  other_data)

Copy assignment operator.

Member Data Documentation

◆ smoothing_range

template<typename PreconditionerType >
double internal::EigenvalueAlgorithmAdditionalData< PreconditionerType >::smoothing_range

This sets the range between the largest eigenvalue in the matrix and the smallest eigenvalue to be treated. If the parameter is set to a number less than 1, an estimate for the largest and for the smallest eigenvalue will be calculated internally. For a smoothing range larger than one, the preconditioner will act in the interval \([\lambda_\mathrm{max}/ \tt{smoothing\_range}, \lambda_\mathrm{max}]\), where \(\lambda_\mathrm{max}\) is an estimate of the maximum eigenvalue of the matrix. A choice of smoothing_range between 5 and 20 is useful in case the preconditioner is used as a smoother in multigrid.

Definition at line 157 of file precondition.h.

◆ eig_cg_n_iterations

template<typename PreconditionerType >
unsigned int internal::EigenvalueAlgorithmAdditionalData< PreconditionerType >::eig_cg_n_iterations

Maximum number of CG iterations performed for finding the maximum eigenvalue. If set to zero, no computations are performed. Instead, the user must supply a largest eigenvalue via the variable PreconditionRelaxation::AdditionalData::max_eigenvalue.

Definition at line 165 of file precondition.h.

◆ eig_cg_residual

template<typename PreconditionerType >
double internal::EigenvalueAlgorithmAdditionalData< PreconditionerType >::eig_cg_residual

Tolerance for iterations performed for finding the maximum eigenvalue by the eigenvalue algorithm (Lanczos or power iteration).

Definition at line 171 of file precondition.h.

◆ max_eigenvalue

template<typename PreconditionerType >
double internal::EigenvalueAlgorithmAdditionalData< PreconditionerType >::max_eigenvalue

Maximum eigenvalue to work with. Only in effect if eig_cg_n_iterations is set to zero, otherwise this parameter is ignored.

Definition at line 178 of file precondition.h.

◆ constraints

template<typename PreconditionerType >
::AffineConstraints<double> internal::EigenvalueAlgorithmAdditionalData< PreconditionerType >::constraints

Constraints to be used for the operator given. This variable is used to zero out the correct entries when creating an initial guess.

Definition at line 184 of file precondition.h.

◆ eigenvalue_algorithm

template<typename PreconditionerType >
EigenvalueAlgorithm internal::EigenvalueAlgorithmAdditionalData< PreconditionerType >::eigenvalue_algorithm

Stores the preconditioner object that the Chebyshev is wrapped around.

Definition at line 189 of file precondition.h.

◆ preconditioner

template<typename PreconditionerType >
std::shared_ptr<PreconditionerType> internal::EigenvalueAlgorithmAdditionalData< PreconditionerType >::preconditioner

Preconditioner.

Definition at line 194 of file precondition.h.


The documentation for this struct was generated from the following file: