Theory: Linear elastic active muscle model

Jean-Paul Pelteret

March 20, 2017

An introduction to the theory applied to the linear elastic active muscle model of the biceps brachii.

1 Governing equations for quasi-static linear elasticity

The strong statement of the balance of linear momentum reads

$$
\begin{equation*}
\nabla \cdot \boldsymbol{\sigma}+\mathbf{b}=\mathbf{0} \quad \text { on } \quad \Omega \tag{1}
\end{equation*}
$$

where $\nabla=\frac{\partial}{\partial x}$ is a differential operator, $\boldsymbol{\sigma}$ is the Cauchy stress tensor and $\mathbf{b}=\rho \mathbf{g}$ is the body force density vector. This is expressed in index notation as

$$
\begin{equation*}
\frac{\partial \sigma_{i j}}{\partial x_{j}}+b_{i}=0 \quad \text { on } \quad \Omega \tag{2}
\end{equation*}
$$

Pre-multiplying the above by test function $\delta \mathbf{v}$ and integrating over the domain Ω renders

$$
\begin{equation*}
-\int_{\Omega} \delta v_{i} \frac{\partial \sigma_{i j}}{\partial x_{j}} d v=\int_{\Omega} \delta v_{i} b_{i} d v \tag{3}
\end{equation*}
$$

that, by using the product rule for derivatives (i.e. integration by parts), becomes

$$
\begin{equation*}
\int_{\Omega} \frac{\partial \delta v_{i}}{\partial x_{j}} \sigma_{i j} d v-\int_{\Omega} \frac{\partial}{\partial x_{j}}\left[\delta v_{i} \sigma_{i j}\right] d v=\int_{\Omega} \delta v_{i} b_{i} d v \tag{4}
\end{equation*}
$$

Finally, by applying divergence theorem to the second term in the above, we attain the weak form of the balance of linear momentum

$$
\begin{equation*}
\int_{\Omega} \frac{\partial \delta v_{i}}{\partial x_{j}} \sigma_{i j} d v=\int_{\Omega} \delta v_{i} b_{i} d v+\int_{\partial \Omega} \delta v_{i} \underbrace{\sigma_{i j} n_{j}}_{\overline{t_{i}}} d a \tag{5}
\end{equation*}
$$

wherein \mathbf{n} represents the outward facing normal on $\partial \Omega$, the boundary of the domain, and $\overline{\mathbf{t}}$ the prescribed traction on the Neumann boundary.

2 Constitutive law: A linearised Hill three-element active muscle model with surrounding matrix [1]

The linear constitutive law used to model active muscle tissue is derived by [1] from the nonlinear model developed by [2, 3]. In the representation given here, we deviate slightly from the notation given in [1] to facilitate its implementation.

Embedding of one-dimensional fibre model into three-dimensional space

We begin by defining the decomposition of the Cauchy stress tensor into a matrix and fibre contribution as

$$
\begin{equation*}
\boldsymbol{\sigma}=\boldsymbol{\sigma}_{m}+\boldsymbol{\sigma}_{f} \tag{6}
\end{equation*}
$$

where m, f respectively denote contributions from the surrounding matrix and muscle fibres. The isotropic linear constitutive law for the matrix surrounding the muscle fibres is

$$
\begin{equation*}
\boldsymbol{\sigma}_{m}=\mathbb{C}_{m}: \varepsilon \tag{7}
\end{equation*}
$$

where \mathbb{C}_{m} is the stiffness tensor for the matrix, and the small strain tensor

$$
\begin{equation*}
\varepsilon=\frac{1}{2}\left[\nabla \mathbf{u}+[\nabla \mathbf{u}]^{T}\right] . \tag{8}
\end{equation*}
$$

The fibre stress and strain are computed by

$$
\begin{equation*}
\boldsymbol{\sigma}_{f}=T_{f} \mathbf{m} \otimes \mathbf{m} \quad, \quad \varepsilon_{f}=[\mathbf{m} \otimes \mathbf{m}]: \varepsilon \tag{9}
\end{equation*}
$$

Linearised version of Martin's one-dimensional muscle model

Figure 1 shows an analogue for the sarcomere, the smallest building-block of active muscle fibres. The distributions of strains and stresses within the various elements of the

Figure 1: Schematic of the Hill-type muscle fibre [1].
representative model is determined by their arrangement with respect to one another. In the linearised (small-strain) version of the Hill three-element model, the decomposition of stress in the fibre as a whole and the one parallel branch are

$$
\begin{equation*}
T_{f}=T_{p}+T_{s} \quad \text { and } \quad T_{c}=T_{s} \tag{10}
\end{equation*}
$$

where T is a measure of nominal stress, and the subscripts f, p, s, c respectively denote the fibre (as a whole), and the parallel, series and contractile element in the Hill model. Similarly, the decomposition of the (small) strains in the Hill model are

$$
\begin{equation*}
\varepsilon_{f}=\varepsilon_{p} \equiv \varepsilon_{s}+\varepsilon_{c} . \tag{11}
\end{equation*}
$$

The constitutive laws governing the response of each element are as follows:

$$
\begin{equation*}
T_{p}=T_{0} f_{p} \quad, \quad T_{s}=T_{0} f_{s} \quad \text { and } \quad T_{c}=f_{c}^{l}\left(\varepsilon_{c}\right) f_{c}^{v}\left(\dot{\varepsilon}_{c}\right) \alpha(u(t)) . \tag{12}
\end{equation*}
$$

where T_{0} is the nominal stress, a physiological constant which defines to the maximum force of contraction under isometric conditions. Here the driver functions for the passive parallel and series elements are

$$
\begin{gather*}
f_{p}\left(\varepsilon_{f}\right)= \begin{cases}m_{p} \varepsilon_{f} & \text { if } \varepsilon_{f}>0 \\
0 & \text { otherwise }\end{cases} \tag{13}\\
f_{s}\left(\varepsilon_{s}\right)=\left\{\begin{array}{ll}
m_{s} \varepsilon_{s} \equiv m_{s}\left[\varepsilon_{f}-\varepsilon_{c}\right] & \text { if } \varepsilon_{s} \equiv \varepsilon_{f}-\varepsilon_{c}>0 \\
0 & \text { otherwise }
\end{array} .\right. \tag{14}
\end{gather*}
$$

Here the strain relationship between the elements is used to remove ε_{s} as an unknown. For the active contractile element, the force-length and force-velocity relationships are approximated as

$$
\begin{align*}
f_{c}^{l}\left(\varepsilon_{c}\right) & = \begin{cases}1 & \text { if }-0.5 \leq \varepsilon_{c} \leq 0.5 \\
0 & \text { otherwise }\end{cases} \tag{15}\\
f_{c}^{v}\left(\dot{\varepsilon}_{c}\right) & = \begin{cases}0 & \text { if } \dot{\varepsilon}_{c}<-5 \\
\frac{1}{5} \dot{\varepsilon}_{c}+1 & \text { if }-5 \leq \dot{\varepsilon}_{c}<3 \\
1.6 & \text { otherwise }\end{cases} \tag{16}
\end{align*}
$$

the latter of which we can write in general as

$$
\begin{equation*}
f_{c}^{v}\left(\dot{\varepsilon}_{c}\right)=m_{c}^{v} \dot{\varepsilon}_{c}+c_{c}^{v} . \tag{17}
\end{equation*}
$$

Note that alternative linearisations for these terms are possible, and that the ratedependence of the contractile element makes this model "visco-elastic". The differential equation that defines the muscle activation model [4] is expressed a function of the neural signal $u(t)$ by

$$
\begin{equation*}
\dot{\alpha}(u(t))=\frac{1}{\tau_{r}}[1-\alpha] u+\frac{1}{\tau_{f}}\left[\alpha_{\min }-\alpha\right][1-u] . \tag{18}
\end{equation*}
$$

The parameters τ_{r} and τ_{f} control the rise and fall of the activation function with respect to the history of the neural signal, and $\alpha_{\min }$ is the minimum activation level (real muscles are never completely inactive; they always retain some degree of tetanisation).

Time differentiation

For all time derivatives we employ a first-order backward Euler scheme. Therefore the contractile strain rate and rate of change of muscle activation at timestep n are approximated as

$$
\begin{array}{r}
\dot{\varepsilon}_{c} \approx \frac{\varepsilon_{c}^{n}-\varepsilon_{c}^{n-1}}{\Delta t} \\
\dot{\alpha} \approx \frac{\alpha^{n}-\alpha^{n-1}}{\Delta t} \tag{20}
\end{array}
$$

Consequently the expression for the force-velocity relationship and activation level can be explicitly stated in terms of the history variables $\varepsilon_{c}^{n-1}, \alpha^{n-1}$ and the remaining unknowns $\varepsilon_{c}^{n}, \alpha^{n}$.

Substitution of fibre constitutive laws into one-dimensional stress relationship

From the equivalence of T_{c} and T_{s}, substituting in all of the salient previously derived expressions and considering $\alpha>0$, we can extract the explicit expression for ε_{c} in terms of ε_{f} by the following steps:

$$
\begin{gathered}
f_{c}^{l} f_{c}^{v} \alpha=f_{s} \\
\Rightarrow \quad f_{c}^{l}\left[m_{c}^{v} \frac{\varepsilon_{c}-\varepsilon_{c}^{n-1}}{\Delta t}+c_{c}^{v}\right] \alpha=m_{s}\left[\varepsilon_{f}-\varepsilon_{c}\right]
\end{gathered}
$$

that, with some further rearrangement, becomes

$$
\begin{align*}
\varepsilon_{c} & =\underbrace{\left[f_{c}^{l} m_{c}^{v} \frac{1}{\Delta t} \alpha+m_{s}\right]}_{\beta}-1[m_{s} \varepsilon_{f}+\underbrace{f_{c}^{l} \alpha\left[m_{c}^{v} \varepsilon_{c}^{n-1} \frac{1}{\Delta t}-c_{c}^{v}\right]}_{\gamma}] \\
& =\frac{m_{s}}{\beta} \varepsilon_{f}+\frac{\gamma}{\beta} \tag{21}
\end{align*}
$$

Note that $\beta>0$ under all conditions as $m_{s}>0$ during contraction.

Substitution of constitutive laws into three-dimensional stress relationship

For the most general case, we can decompose the total Cauchy stress as

$$
\begin{align*}
\boldsymbol{\sigma} & =\mathbb{C}_{m}: \boldsymbol{\varepsilon}+\boldsymbol{\sigma}_{f} \\
& =\mathbb{C}_{m}: \boldsymbol{\varepsilon}+T_{f} \mathbf{m} \otimes \mathbf{m} \\
& =\mathbb{C}_{m}: \boldsymbol{\varepsilon}+T_{0}\left[m_{p} \varepsilon_{f}+m_{s}\left[\varepsilon_{f}-\varepsilon_{c}\right]\right] \mathbf{m} \otimes \mathbf{m} \\
& =\mathbb{C}_{m}: \boldsymbol{\varepsilon}+T_{0}\left[m_{p} \varepsilon_{f}+m_{s}\left[\varepsilon_{f}-\left[\frac{m_{s}}{\beta} \varepsilon_{f}+\frac{\gamma}{\beta}\right]\right]\right] \mathbf{m} \otimes \mathbf{m} \\
& =\mathbb{C}_{m}: \boldsymbol{\varepsilon}+T_{0}\left[m_{p}+m_{s}-\frac{m_{s}^{2}}{\beta}\right] \varepsilon_{f} \mathbf{m} \otimes \mathbf{m}-\left[T_{0} m_{s} \frac{\gamma}{\beta}\right] \mathbf{m} \otimes \mathbf{m} \\
& =[\underbrace{\mathbb{C}_{m}+\underbrace{}_{0}\left[m_{p}+m_{s}-\frac{m_{s}^{2}}{\beta}\right] \mathbf{m} \otimes \mathbf{m} \otimes \mathbf{m} \otimes \mathbf{m}}_{\mathbb{C}_{f}^{*}}]: \boldsymbol{\varepsilon}(\mathbf{u})-\underbrace{\left[T_{0} m_{s} \frac{\gamma}{\beta}\right] \mathbf{m} \otimes \mathbf{m}}_{\boldsymbol{\sigma}_{f}^{*}} \tag{22}
\end{align*}
$$

Note here that the first term on the right hand side $\left(\left[\mathbb{C}_{m}+\mathbb{C}_{f}^{*}\right]: \varepsilon(\mathbf{u})\right)$ is dependent on the solution, and the second term ($\boldsymbol{\sigma}_{f}^{*}$) depends only on local history variables.

3 Finite element discretisation

Combining eqs. (5) and (22) renders the complete expression of the balance of linear momentum, with accommodation of the muscle fibre model, namely

$$
\begin{equation*}
\int_{\Omega} \frac{\partial \delta v_{i}}{\partial x_{j}}\left[\mathbb{C}_{m}+\mathbb{C}_{f}^{*}\right]_{i j k l} \varepsilon_{k l} d v=\int_{\Omega} \delta v_{i} b_{i} d v+\int_{\partial \Omega} \delta v_{i} \underbrace{\sigma_{i j} n_{j}}_{\bar{t}_{i}} d a-\int_{\Omega} \frac{\partial \delta v_{i}}{\partial x_{j}}\left[\sigma_{f}^{*}\right]_{i j} d v, \tag{23}
\end{equation*}
$$

We discretise the trial solution and test function using finite element shape functions (ansatz)

$$
\begin{equation*}
\mathbf{u}(\mathbf{x}) \approx \sum_{I} \boldsymbol{\Phi}^{I}(\mathbf{x}) u^{I} \quad, \quad \mathbf{v}(\mathbf{x}) \approx \sum_{I} \boldsymbol{\Phi}^{I}(\mathbf{x}) v^{I} \tag{24}
\end{equation*}
$$

where $\mathbf{N}^{I}(\mathbf{x})$ is the (position-dependent) vector-valued finite element shape function corresponding to the $I^{\text {th }}$ degree-of-freedom, and u^{I}, v^{I} are coefficients of the solution and trial function. In deal. II nomenclature, the shape function is computed from a scalar base shape function and some expansion into higher-dimensional space by

$$
\begin{equation*}
\boldsymbol{\Phi}^{I}(\mathbf{x})=N^{I}(\mathbf{x}) \mathbf{e}_{\operatorname{comp}(I)} \tag{25}
\end{equation*}
$$

where N^{I} is a scalar shape function and $\mathbf{e}_{\operatorname{comp}(I)}$ is the basis direction associated with the $I^{\text {th }}$ degree-of-freedom. Therefore, the $j^{\text {th }}$ local component of shape function $\boldsymbol{\Phi}^{I}(\mathbf{x})$ is given by

$$
\begin{equation*}
\left[\boldsymbol{\Phi}^{I}(\mathbf{x})\right]_{j}=N^{I}(\mathbf{x})\left[\mathbf{e}_{\operatorname{comp}(I)}\right]_{j}=N^{I}(\mathbf{x}) \delta_{\operatorname{comp}(I) j} \tag{26}
\end{equation*}
$$

where $\delta_{i j}$ is the Kronecker delta. Note that in this instance we use the same ansatz for the test and trial spaces, and the $0 \leq \operatorname{comp}(I), j<$ spacedim.

We now use these shape functions to discretise the weak expression for the balance of linear momentum. Starting on the right-hand side of eq. (23), the body force and traction contributions are computed by

$$
\begin{align*}
\int_{\Omega} \delta v_{i} b_{i} d v & =\int_{\Omega}\left[\sum_{I} \boldsymbol{\Phi}^{I}(\mathbf{x}) \delta v^{I}\right]_{i} b_{i} d v=\sum_{I} \delta v^{I} \int_{\Omega}\left[\boldsymbol{\Phi}^{I}(\mathbf{x})\right]_{i} b_{i} d v \\
& =\sum_{I} \delta v^{I} \int_{\Omega} N^{I}(\mathbf{x}) \delta_{\operatorname{comp}(I) i} b_{i} d v=\sum_{I} \delta v^{I} \int_{\Omega} N^{I} b_{\operatorname{comp}(I)} d v \tag{27}\\
\int_{\Omega} \delta v_{i} t_{i} d v & =\sum_{I} \delta v^{I} \int_{\Omega} N^{I} t_{\operatorname{comp}(I)} d v . \tag{28}
\end{align*}
$$

while the contribution to the right-hand side that arise from the history variables is

$$
\begin{align*}
-\int_{\Omega} \frac{\partial}{\partial x_{j}}\left[\delta v_{i}\right]\left[\boldsymbol{\sigma}_{f}^{*}\right]_{i j} d v & =-\int_{\Omega} \frac{\partial}{\partial x_{j}}\left[\sum_{I} \boldsymbol{\Phi}^{I}(\mathbf{x}) \delta v^{I}\right]_{i}\left[\boldsymbol{\sigma}_{f}^{*}\right]_{i j} d v \\
& =-\sum_{I} \delta v^{I} \int_{\Omega} \frac{\partial}{\partial x_{j}}\left[\boldsymbol{\Phi}^{I}(\mathbf{x})\right]_{i}\left[\boldsymbol{\sigma}_{f}^{*}\right]_{i j} d v \\
& =-\sum_{I} \delta v^{I} \int_{\Omega} \frac{\partial}{\partial x_{j}}\left[N^{I}(\mathbf{x}) \delta_{\operatorname{comp}(I) i}\right]\left[\boldsymbol{\sigma}_{f}^{*}\right]_{i j} d v \\
& =-\sum_{I} \delta v^{I} \int_{\Omega} \frac{\partial N^{I}(\mathbf{x})}{\partial x_{j}}\left[\boldsymbol{\sigma}_{f}^{*}\right]_{\operatorname{comp}(I) j} d v \tag{29}
\end{align*}
$$

The last component of eq. (23) that we wish to express in discrete form is the left-hand side of the equation. Before we do, we observe that using the minor symmetry of the material stiffness tensor we can re-express the contraction of it and the small strain tensor as

$$
\begin{equation*}
\mathbb{C}: \varepsilon=\mathbb{C}: \frac{1}{2}\left[\nabla \mathbf{u}+[\nabla \mathbf{u}]^{T}\right] \equiv \mathbb{C}: \nabla \mathbf{u} \tag{30}
\end{equation*}
$$

Therefore, this contribution written in discrete form is

$$
\begin{align*}
& \int_{\Omega} \frac{\partial \delta v_{i}}{\partial x_{j}}\left[\mathbb{C}_{m}+\mathbb{C}_{f}^{*}\right]_{i j k l} \varepsilon_{k l} d v \equiv \int_{\Omega} \frac{\partial \delta v_{i}}{\partial x_{j}} \mathbb{C}_{i j k l} \frac{\partial \delta u_{k}}{\partial x_{l}} d v \\
& \equiv \int_{\Omega} \frac{\partial}{\partial x_{j}}\left[\sum_{I} \boldsymbol{\Phi}^{I}(\mathbf{x}) \delta v^{I}\right]_{i} \mathbb{C}_{i j k l} \frac{\partial}{\partial x_{l}}\left[\sum_{J} \boldsymbol{\Phi}^{J}(\mathbf{x}) \delta u^{J}\right]_{k} d v \\
& \equiv \sum_{I, J} \delta v^{I}\left[\int_{\Omega} \frac{\partial}{\partial x_{j}}\left[\boldsymbol{\Phi}^{I}(\mathbf{x})\right]_{i} \mathbb{C}_{i j k l} \frac{\partial}{\partial x_{l}}\left[\boldsymbol{\Phi}^{J}(\mathbf{x})\right]_{k} d v\right] \delta u^{J} \\
& \equiv \sum_{I, J} \delta v^{I}\left[\int_{\Omega} \frac{\partial N^{I}(\mathbf{x})}{\partial x_{j}} \delta_{\operatorname{comp}(I) i} \mathbb{C}_{i j k l} \frac{\partial N^{J}(\mathbf{x})}{\partial x_{l}} \delta_{\operatorname{comp}(J) k} d v\right] \delta u^{J} \\
& \equiv \sum_{I, J} \delta v^{I}\left[\int_{\Omega} \frac{\partial N^{I}(\mathbf{x})}{\partial x_{j}} \mathbb{C}_{\operatorname{comp}(I) j \operatorname{comp}(J) l} \frac{\partial N^{J}(\mathbf{x})}{\partial x_{l}} d v\right] \delta u^{J} . \tag{31}
\end{align*}
$$

Equations (27) to (29) and (31) are collectively used to develop the system of linear equations that are solved at each time step.

References

[1] Y. Kajee, J-P. V. Pelteret, and B. D. Reddy. The biomechanics of the human tongue. International Journal for Numerical Methods in Biomedical Engineering, 29(4):492514, April 2013.
[2] J. A. C. Martins, M. P. M. Pato, and E. B. Pires. A finite element model of skeletal muscles. Virtual and Physical Prototyping, 1:159-170, 2006.
[3] J. A. C. Martins, E. B. Pires, R. Salvado, and P. B. Dinis. A numerical model of passive and active behaviour of skeletal muscles. Computer Methods in Applied Mechanics and Engineering, 151:419-433, 1998.
[4] M. G. Pandy, F. E. Zajac, E. Sim, and W. S. Levine. An optimal control model for maximum-height human jumping. Journal of Biomechanics, 23:1185-1198, 1990.

