Efficient matrix-free methods in deal.II

Martin Kronbichler
Joint work with Katharina Kormann

Technische Universität München

August 20, 2013

Outline

Introduction
Matrix-free algorithm
Innovations of matrix-free implementation
Efficient element kernels
MPI parallelization
Thread parallelization
Vectorization

Matrix-free performance: details
Applications
Summary \& Outlook

Outline

Introduction

Matrix－free algorithm
Innovations of matrix－free implementation
Efficient element kernels
MPI parallelization
Thread parallelization
Vectorization

Matrix－free performance：details
Applications
Summary \＆Outlook

《ロ・《回〉

Performance of matrix-free methods

Problem solved: 3D Poisson equation $(\nabla v, \nabla u)=(v, f)$, uniform grid, CG + geometric multigrid

\mathcal{Q}_{8} elements, 455 m DoFs, solver time: 226.7 s How many processors?

Performance of matrix-free methods

Problem solved: 3D Poisson equation $(\nabla v, \nabla u)=(v, f)$, uniform grid, CG + geometric multigrid

\mathcal{Q}_{8} elements, 455 m DoFs, solver time: 226.7 s How many processors?
Sparse matrix (step-16 without adaptivity): ~ 240 s on 512 cores, 12 GB memory per core

Performance of matrix-free methods

Problem solved: 3D Poisson equation $(\nabla v, \nabla u)=(v, f)$, uniform grid, CG + geometric multigrid

\mathcal{Q}_{8} elements, 455 m DoFs, solver time: 226.7 s How many processors?

Performance of matrix-free methods

Problem solved: 3D Poisson equation $(\nabla v, \nabla u)=(v, f)$, uniform grid, CG + geometric multigrid

\mathcal{Q}_{8} elements, 455 m DoFs, solver time: 226.7 s How many processors?
Desktop machine as of 2013, 6 cores of Sandy-Bridge EP @ 3.2 GHz, uses 61 GB RAM

Performance of matrix-free methods

Problem solved: 3D Poisson equation $(\nabla v, \nabla u)=(v, f)$, uniform grid, CG + geometric multigrid

Performance of matrix-free methods

Problem solved: 3D Poisson equation $(\nabla v, \nabla u)=(v, f)$, uniform grid, CG + geometric multigrid

Issues with classical algorithms based on sparse matrices

- Typical finite element programs spend between 70 and 95% of time in iterative methods (linear solvers), especially for more complicated problems (Stokes, Navier-Stokes)
- Linear solvers spend $\sim 95 \%$ of time on sparse matrix-vector products (SpMV) (or sparse matrix substitutions)
${ }^{1}$ S. Williams et al. (2007). Optimization of sparse matrix-vector multiplication on emerging multicore platforms. Proc. SC2007
${ }^{2}$ Tuned kernels: http://bebop.cs.berkeley.edu/oski

Issues with classical algorithms based on sparse matrices

- Typical finite element programs spend between 70 and 95% of time in iterative methods (linear solvers), especially for more complicated problems (Stokes, Navier-Stokes)
- Linear solvers spend $\sim 95 \%$ of time on sparse matrix-vector products (SpMV) (or sparse matrix substitutions)
- However, SpMV perform poorly on modern computers (memory bandwidth limited, not computation limited)
- Tuning has been tried, but does not get very far (maybe $10-30 \%$ improvement $)^{1} 2$
- Computer architecture: memory bandwidth has increased more slowly than pure arithmetic throughput and will continue to do so in the future

[^0]
Performance of SpMV

Number of billion arithmetic operations per second (Gflops) of sparse-matrix vector products depending on problem size, 3D Laplacian, \mathcal{Q}_{2} elements, Sandy Bridge EP, 3.2 GHz

Peak 1 core: 28 Gflops
Peak 6 cores: 144 Gflops
Sustained memory throughput: $35 \mathrm{~GB} / \mathrm{s}$

Performance of SpMV

Number of billion arithmetic operations per second (Gflops) of sparse-matrix vector products depending on problem size, 3D Laplacian, \mathcal{Q}_{2} elements, Sandy Bridge EP, 3.2 GHz

Peak 1 core: 28 Gflops
Peak 6 cores: 144 Gflops
Sustained memory throughput: $35 \mathrm{~GB} / \mathrm{s}$

Motivation for matrix-free approach

Less memory requirements for matrix representation \rightarrow faster matrix-vector products (even when doing more arithmetic operations) ${ }^{3}$
${ }^{3}$ M. Kronbichler, K. Kormann: A generic interface for parallel finite operator application. Comput. Fluids 63:135-147 (2012)

Outline

Introduction

Matrix-free algorithm
Innovations of matrix-free implementation
Efficient element kernels
MPI parallelization
Thread parallelization
Vectorization

Matrix-free performance: details
Applications
Summary \& Outlook

Matrix-vector products without creating a global matrix

$$
v=A u=\left(\sum_{K \in\{\text { cells }\}} C^{T} P_{K}^{T} A_{K} P_{K} C\right) u
$$

Matrix-vector products without creating a global matrix

$$
v=A u=\sum_{K \in\{\mathrm{cells}\}} C^{T} P_{K}^{T} A_{K}\left(P_{K} C u\right)
$$

Basic algorithm:

- $v \leftarrow 0$
- loop over cells
(i) Extract local vector values on cell, resolve constraints:
$u_{K}=P_{K} C u$
(ii) Apply operation locally on cell: $v_{K}=A_{K} u_{K}$
(iii) Sum results from (ii) into the global solution vector, apply constraints: $v \leftarrow v+C^{T} P_{K}^{T} v_{K}$

Cell operation $v_{K}=A_{K} u_{K}$ for variable-coefficient Laplacian

 $(\nabla v, a \nabla u)$Compute cell contribution to matrix-vector product:

$$
\left(A_{K} u_{K}\right)_{j}=\int_{K} \nabla \phi_{j} a\left(\nabla u^{h}\right) d \mathbf{x} \approx \sum_{q} w_{q}\left|\operatorname{det} J_{q}\right|\left[\nabla \phi_{j} a \nabla u\right]_{\mathrm{x}=\mathrm{x}_{q}}
$$

(a) Compute gradient on cell for all quadrature points.
(b) On each quadrature point:

- Multiply each component of the gradient $\nabla u^{h}\left(\mathbf{x}_{q}\right)$ by $a\left(\mathbf{x}_{q}\right) w_{q}\left|\operatorname{det} J\left(\hat{\mathbf{x}}_{q}\right)\right|$ (coefficient, quadrature weight, Jacobian determinant).
(c) Test by gradient of basis functions and sum over all quadrature points.

Cell operation $v_{K}=A_{K} u_{K}$ for variable-coefficient Laplacian

 $(\nabla v, a \nabla u)$: deal. II vector assembly```
// ...
typename DoFHandler<dim>::active_cell_iterator
 cell = dof_handler.begin_active(),
 endc = dof_handler.end();
for (; cell!=endc; ++cell)
 {
 local_dst = 0;
 fe_values.reinit (cell);
 coefficient.value_list(fe_values.get_quadrature_points(),
 coefficient_values);
 fe_values.get_function_gradients (src, src_gradients);
 for (unsigned int q=0; q<n_q_points; ++q)
 for(unsigned int i=0; i<dofs_per_cell; ++i)
 local_dst(i) += (fe_values.shape_grad(i,q) *
 coēfficient_values[q] *
 fe_values.JxW(q) *
 src_gradients[q]);
 cell->get_dof_indices(local_dof_indices);
 constraints.dīstribute_loca\overline{l_to_global (local_dst, local_dof_indices,}
 dst);
 }
```


## Cell operation $v_{K}=A_{K} u_{K}$ for variable-coefficient Laplacian

 $(\nabla v, a \nabla u)$ : more efficient to split gradient and geometryCompute cell contribution to matrix-vector product:

$$
\left(A_{K} u_{K}\right)_{j}=\int_{K} \nabla \phi_{j} a\left(\nabla u^{h}\right) d \mathbf{x} \approx \sum_{q} w_{q}\left|\operatorname{det} J_{q}\right|\left[\nabla \phi_{j} a \nabla u\right]_{\mathrm{x}=\mathrm{x}_{q}}
$$

(a) Compute gradient on unit cell for all quadrature points.
(b) On each quadrature point:

- Apply Jacobian transformation $J^{-T}\left(\hat{x}_{q}\right)$
- Multiply each component of the gradient $\nabla u^{h}\left(\mathbf{x}_{q}\right)$ by $a\left(\mathbf{x}_{q}\right) w_{q}\left|\operatorname{det} J\left(\hat{\mathbf{x}}_{q}\right)\right|$ (coefficient, quadrature weight, Jacobian determinant).
- Apply Jacobian transformation $J^{-1}\left(\hat{\mathbf{x}}_{q}\right)$
(c) Test by unit cell gradient of basis functions and sum over all quadrature points.


## Outline

## Introduction

## Matrix-free algorithm

Innovations of matrix-free implementation
Efficient element kernels
MPI parallelization
Thread parallelization
Vectorization
Matrix-free performance: details

## Applications

Summary \& Outlook

## Efficient element kernels I: Evaluation of unit cell gradient

- Form of basis functions: $\phi(x, y)=\varphi(x) \varphi(y)$
- Evaluate unit cell derivative:

$$
\frac{\partial u\left(x_{q}, y_{q}\right)}{\partial \hat{x}_{1}}=\sum_{i \in \text { cell_dofs }} u^{(i)} \frac{\partial \phi_{i}\left(x_{q}, y_{q}\right)}{\partial \hat{x}_{1}}=\sum_{i_{x}} \sum_{i_{y}} u^{\left(i_{x}, i_{y}\right)} \varphi_{i_{y}}\left(y_{q}\right) \frac{\partial \varphi_{i_{x}}\left(x_{q}\right)}{\partial \hat{x}_{1}}
$$

- Set basis functions evaluated at all quadrature points in one dimension into matrices

$$
A=\left(\begin{array}{ccc}
\varphi_{1}\left(x_{1}\right) & \varphi_{1}\left(x_{2}\right) & \ldots \\
\varphi_{2}\left(x_{1}\right) & \varphi_{2}\left(x_{2}\right) & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right), \quad B=\left(\begin{array}{ccc}
\varphi_{1}^{\prime}\left(x_{1}\right) & \varphi_{1}^{\prime}\left(x_{2}\right) & \ldots \\
\varphi_{2}^{\prime}\left(x_{1}\right) & \varphi_{2}^{\prime}\left(x_{2}\right) & \ldots \\
\vdots & \vdots & \ddots
\end{array}\right)
$$

## Efficient element kernels I: Tensor product structure in

 gradient evaluation (sum factorization)Evaluation of unit cell derivative $\frac{\partial u\left(x_{q}, y_{q}\right)}{\partial \dot{x}_{1}}$ on all quadrature points corresponds to the matrix-vector product

$$
\left.\frac{\partial u\left(x_{q}, y_{q}\right)}{\partial \hat{x}_{1}}\right|_{\text {q_points }}=(A \otimes B) \mathbf{u}_{K},
$$

where $\mathbf{u}_{K}$ collects the node values on cell $K$. Reshape this as matrix-matrix products to reduce complexity from $\mathcal{O}\left((p+1)^{2 d}\right)$ to $\mathcal{O}\left(d(p+1)^{d+1}\right)$

$$
(A \otimes B) \mathbf{u}_{K}=B U_{K} A
$$

Illustration on nodes (successively apply 1D operators):


$$
\mathrm{tmp}=B \cdot U_{k} \quad \operatorname{tmp} \cdot A
$$

## Efficient element kernels II: Make loop bounds known to compiler

- Value and gradient evaluation involves many short loops of length $p+1$
- For low element degree $p$, this involves high loop overhead
- Introduce element degree (and number of quadrature points) as compile-time constant in FEEvaluation $\rightarrow$ speedup $3 \times$ at low order and $1.5 \times$ at high order


## Implementation

MatrixFree class stores indices and mapping data (evaluated geometry is cached), FEEvaluation implements element kernels similar to FEValues.

Code example for Laplacian $(\nabla v, a \nabla u)$ :

```
template <int dim, int fe_degree>
void local_operation (const MatrixFree<dim> &matrix_free,
 Vector<double>
 const Vector<double> &src,
 &dst,
 const std::pair<unsigned int,unsigned int> &cell_range)
{
 FEEvaluation<dim,fe_degree> phi(matrix_free);
 for (unsigned int cell=cell_range.first; cell<cell_range.second; ++cell)
 {
 phi.reinit(cell);
 phi.read_dof_values (src);
 phi.evaluate (false, true);
 for (unsigned int q=0; q<phi.n_q_points; ++q)
 phi.submit_gradient (coefficient_values(cell, q) *
 phi.get_gradient(q), q);
 phi.integrate (false, true);
 phi.distribute_local_to_global(dst);
 }
}
```


## MPI parallelization

Matrix-free algorithm including MPI:

- $v \leftarrow 0$
- Update ghost values: Import from other MPI processes.
- loop over cells
(i) Extract local vector values on cell, resolve constraints:

$$
u_{K}=P_{K} C u
$$

(ii) Apply operation locally on cell: $v_{K}=A_{K} u_{K}$
(iii) Sum results from (ii) into the global solution vector, apply constraints: $v \leftarrow v+C^{T} P_{K}^{T} v_{K}$

- compress: Exchange of information along processor boundaries.
Use specially adapted vector type
parallel::distributed::Vector that allows direct array access in MPI-local index space (otherwise: performance penalty by factor $2-3)$.


## Thread parallelization

- Recall loop over all cells:
(i) Extract local vector values on cell: $u_{K}=P_{K} C u$
(ii) Apply operation locally on cell: $v_{K}=A_{K} u_{k}$
(iii) Sum results from (ii) into the global solution vector:
$v \leftarrow v+C^{T} P_{K}^{T} v_{K}$
- Tasks (i) and (ii) independent between cells, but final write operation (iii) must be synchronized between neighbors

[^1]
## Thread parallelization

- Recall loop over all cells:
(i) Extract local vector values on cell: $u_{K}=P_{K} C u$
(ii) Apply operation locally on cell: $v_{K}=A_{K} u_{k}$
(iii) Sum results from (ii) into the global solution vector:

$$
v \leftarrow v+C^{T} P_{K}^{T} v_{K}
$$

- Tasks (i) and (ii) independent between cells, but final write operation (iii) must be synchronized between neighbors
- To avoid serializing writes or private solution vectors (MPI-type approach), work on non-overlapping chunks of cells by a combination of partitioning and coloring ${ }^{4}$
- Coloring: Cells are assigned colors - cells with same color are not adjacent. Different colors are worked on at different times.
- Partitioning: Cells are subdivided into partitions such that $P_{k}$ is only adjacent to $P_{k-1}$ and $P_{k+1}$ (Cuthill-McKee type of partitions).

[^2]
## Partitioning and coloring: Illustration

Combining partitions on outer level with coloring within the partitions gives good cache performance, enough chunks of cells to keep all threads busy

| 5/0 | 5/0 | 4/0 | 4/0 | 4/2 | 4/2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4/2 | 4/2 | 4/1 | 4/1 |  |  |
| 4/0 | 4/0 | 3/0 | 3/0 | 3/2 | 3/2 |
| 3/2 | 3/2 | 3/1 | 3/1 |  |  |
| 3/0 | 3/0 | 2/2 | 2/2 | $2 / 3$ | 2/3 |
| 2/0 | 2/0 | 2/1 | 2/1 |  |  |
| 1/0 | 1/0 | 1/2 | 1/2 | 2/0 | 2/0 |
| $0 / 0$ | 0/0 | 1/1 | 1/1 |  |  |



Dynamic task scheduling based on this graph done by Intel's Threading Building Blocks

## Vectorization

- Modern processors support arithmetic operations on several data items (e.g. SSE, AVX). AVX can do operations on 4 double precision variables with one instruction
- However, data must be laid out contiguously in memory for this to be efficient $\rightarrow$ typical array-of-structs approach that for each cell stores local struct-like data is inefficient
- For low to medium orders, it is most efficient to place data from several cells together in small arrays at the innermost level (array-of-structs-of-arrays data layout)
- Vectorization with AVX speeds up computations by a factor 3.5-3.7
- Throughput devices (GPUs, Xeon Phi) have even wider vector units, as will have future CPUs


## Outline

> Introduction

> Matrix-free algorithm
> Innovations of matrix-free implementation
> Efficient element kernels
> MPI parallelization
> Thread parallelization
> Vectorization

Matrix-free performance: details

## Applications

Summary \& Outlook

## Computational complexity and memory in 3D

## Arithmetic operations

 matrix-free approach (fast assembly) vs. sparse matricesMemory consumption matrix-free approach vs. sparse matrices



## Performance in 3D

1.7 million degrees of freedom, 20 matrix-vector products, standard $\mathcal{Q}_{p}$ finite elements, degree 1 to 8

"Interesting" result: except for $p=1$, time for matrix-free is almost independent of element order at the same number of DoFs

## Time spent in different components

3D Laplacian ( $\nabla v, \nabla u$ ) on Cartesian mesh (structured) and ball mesh (unstructured, adaptive refinement) on Nehalem-EP:


## Scaling results

Time for one matrix-vector product with 17 million $\operatorname{DoFs}\left(\mathcal{Q}_{2}\right.$ elements), 1 to 512 cores, Nehalem-EP cluster


## Scaling results

Time for one matrix-vector product with 2.1 billion $\operatorname{DoFs}\left(\mathcal{Q}_{2}\right.$ elements), 80 to 2400 cores, Nehalem-EP cluster


Arithmetic performance increases faster than memory performance: actual SpMV and matrix-free data
$\mathcal{Q}_{2}$ elements, 1.7 m DoFs, Laplacian $(\nabla v, \nabla u)$


Arithmetic performance increases faster than memory performance: actual SpMV and matrix-free data
$\mathcal{Q}_{2}$ elements, 1.7 m DoFs, Laplacian $(\nabla v, \nabla u)$


Arithmetic performance increases faster than memory performance: actual SpMV and matrix-free data
$\mathcal{Q}_{2}$ elements, 1.7 m DoFs, Laplacian $(\nabla v, \nabla u)$


Parallel efficiency SpMV: 62\% Parallel efficiency MF: 85\%



Parallel efficiency SpMV: 52\% Parallel efficiency MF: 79\%

## Outline

```
Introduction
Matrix-free algorithm
Innovations of matrix-free implementation
 Efficient element kernels
 MPI parallelization
 Thread parallelization
 Vectorization
Matrix-free performance: details
```


## Applications

Summary \& Outlook


## Application 1: Incompressible Navier-Stokes equations

$$
\begin{aligned}
\rho\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right)+\nabla \cdot \mu\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right)-\nabla p & =\rho \mathbf{f} \\
\nabla \cdot \mathbf{u} & =0
\end{aligned}
$$

Time for evaluation of linearized Navier-Stokes operator with $\mathcal{Q}_{2} \mathcal{Q}_{1}$ elements in 3 D in seconds on Nehalem-EP:

|  | MF | SpMV | Speedup |
| :--- | :---: | :---: | :---: |
| serial | 0.293 | 1.30 | $4.4 \times$ |
| 8 threads | 0.0487 | 0.486 | $10 \times$ |

Simulation of two-phase flow in 2D/3D with hp adaptivity, total application speedup in 2D/3D

- serial: $2 \times / 4 \times$
- parallel: $3 \times / 7 \times$



## Application 2: Time-dependent Schrödinger equation for quantum dynamics

$$
\begin{aligned}
& \mathrm{i} \frac{\partial}{\partial t}\binom{\psi_{a}}{\psi_{b}}=\left(\begin{array}{cc}
H_{a} & V_{a, b} \\
V_{a, b}^{*} & H_{b}
\end{array}\right)\binom{\psi_{a}}{\psi_{b}} \\
& H_{*}=-\sum_{i=1}^{d} \frac{\hbar^{2}}{2 m_{i}} \frac{\partial^{2}}{\partial x_{i}^{2}}+V_{*}(x)
\end{aligned}
$$

Use high order Gauss-Lobatto elements in space and exponential integrator
 (Lanczos) in time
Application speedup for $\mathcal{Q}_{4}$ over SpMV: $4.5 \times$ Low memory consumption allows for $\mathcal{Q}_{6}, \mathcal{Q}_{7}$ Implementation is competitive with high order finite differences: $\mathcal{Q}_{7}$ elements / 8th order FD by M. Gustafsson © Uppsala University, 11.3 million DoFs (light color) and 89.9 million DoFs (dark color)

## Outline

Introduction
Matrix-free algorithm
Innovations of matrix-free implementation
Efficient element kernels
MPI parallelization
Thread parallelizationVectorization
Matrix-free performance: details
Applications
Summary \& Outlook

## Summary

- Matrix-free implementation is essentially a very fast vector assembly framework that fits both linear operators as well as nonlinear ones (see step-48)
- Significant speedups over state-of-the-art (sparse matrices) for element order 2 and higher due to reduced memory consumption
- Makes higher order elements $(p \geq 3)$ much more attractive


## Future challenges

The matrix-free implementation re-implements several of deal.II's algorithms in a faster but less general way

- (Parallel) loop over cells is already done in MeshWorker which also provides complete support for face integrals (DG) $\rightarrow$ first step would be to introduce task dependency graph concept in other parts of deal.II.
- FEEvaluation has its own syntax but essentially does a subset of what FEValues does. However, we need both vectorization and compile-time information on loop lengths for well-performing algorithms.
- Vectorization will likely become important in other parts of programs in the near future as well.
- Also, FEEvaluation can be used to assemble sparse matrices quickly, quicker than any other method I know (2-3× for $\mathcal{Q}_{1}, 4-25 \times$ for $\mathcal{Q}_{4}$ ). But it would be useful if we could closer collaborate with the mapping data in FEValues instead of caching it in MatrixFree.


[^0]:    ${ }^{1}$ S. Williams et al. (2007). Optimization of sparse matrix-vector multiplication on emerging multicore platforms. Proc. SC2007
    ${ }^{2}$ Tuned kernels: http://bebop.cs.berkeley.edu/oski

[^1]:    ${ }^{4}$ K Kormann, M. Kronbichler: Parallel finite element operator application: Graph partitioning and coloring. Proceedings of the 7th IEEE International Conference on e-Science, 2011

[^2]:    ${ }^{4}$ K Kormann, M. Kronbichler: Parallel finite element operator application: Graph partitioning and coloring. Proceedings of the 7th IEEE International Conference on e-Science, 2011

