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Performance of matrix-free methods

Problem solved: 3D Poisson equation
(∇v ,∇u) = (v , f ), uniform grid, CG +
geometric multigrid
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Q8 elements, 455 m DoFs, solver time: 226.7 s
How many processors?
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Q8 elements, 455 m DoFs, solver time: 226.7 s
How many processors?
Sparse matrix (step-16 without adaptivity):
∼ 240 s on 512 cores, 12 GB memory per core
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Problem solved: 3D Poisson equation
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Q8 elements, 455 m DoFs, solver time: 226.7 s
How many processors?
Desktop machine as of 2013, 6 cores of
Sandy-Bridge EP @ 3.2 GHz, uses 61 GB RAM
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Problem solved: 3D Poisson equation
(∇v ,∇u) = (v , f ), uniform grid, CG +
geometric multigrid
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Q8 elements, 455 m DoFs, solver time: 226.7 s
Run-time improvement matrix-free: 63×
Memory reduction: 95×



Performance of matrix-free methods

Problem solved: 3D Poisson equation
(∇v ,∇u) = (v , f ), uniform grid, CG +
geometric multigrid
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Improvements: time 7×, memory 3.5×



Issues with classical algorithms based on sparse matrices

I Typical finite element programs spend between 70 and 95% of
time in iterative methods (linear solvers), especially for
more complicated problems (Stokes, Navier–Stokes)

I Linear solvers spend ∼95% of time on sparse matrix-vector
products (SpMV) (or sparse matrix substitutions)

I However, SpMV perform poorly on modern computers
(memory bandwidth limited, not computation limited)

I Tuning has been tried, but does not get very far (maybe
10-30% improvement)1 2

I Computer architecture: memory bandwidth has increased
more slowly than pure arithmetic throughput and will continue
to do so in the future

1S. Williams et al. (2007). Optimization of sparse matrix-vector
multiplication on emerging multicore platforms. Proc. SC2007

2Tuned kernels: http://bebop.cs.berkeley.edu/oski
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Performance of SpMV

Number of billion arithmetic operations per second (Gflops) of
sparse-matrix vector products depending on problem size, 3D
Laplacian, Q2 elements, Sandy Bridge EP, 3.2 GHz
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Motivation for matrix-free approach

Less memory requirements for matrix representation → faster
matrix-vector products (even when doing more arithmetic
operations)3

3M. Kronbichler, K. Kormann: A generic interface for parallel finite operator
application. Comput. Fluids 63:135–147 (2012)
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Matrix-vector products without creating a global matrix

v = Au =

 ∑
K∈{cells}

CTPT
K AKPKC

 u

Basic algorithm:

I v ← 0
I loop over cells

(i) Extract local vector values on cell, resolve constraints:
uK = PKCu

(ii) Apply operation locally on cell: vK = AKuK
(iii) Sum results from (ii) into the global solution vector, apply

constraints: v ← v + CTPT
K vK
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Cell operation vK = AKuK for variable-coefficient Laplacian
(∇v , a∇u)

Compute cell contribution to matrix-vector product:

(AKuK )j =

∫
K

∇φja(∇uh)dx ≈
∑
q

wq| det Jq|
[
∇φja∇u

]
x=xq

(a) Compute gradient on cell for all quadrature points.

(b) On each quadrature point:
I Multiply each component of the gradient ∇uh(xq) by

a(xq)wq| det J(x̂q)| (coefficient, quadrature weight, Jacobian
determinant).

(c) Test by gradient of basis functions and sum over all
quadrature points.



Cell operation vK = AKuK for variable-coefficient Laplacian
(∇v , a∇u): deal.II vector assembly



Cell operation vK = AKuK for variable-coefficient Laplacian
(∇v , a∇u): more efficient to split gradient and geometry

Compute cell contribution to matrix-vector product:

(AKuK )j =

∫
K

∇φja(∇uh)dx ≈
∑
q

wq| det Jq|
[
∇φja∇u

]
x=xq

(a) Compute gradient on unit cell for all quadrature points.

(b) On each quadrature point:
I Apply Jacobian transformation J−T (x̂q)
I Multiply each component of the gradient ∇uh(xq) by

a(xq)wq| det J(x̂q)| (coefficient, quadrature weight, Jacobian
determinant).

I Apply Jacobian transformation J−1(x̂q)

(c) Test by unit cell gradient of basis functions and sum over all
quadrature points.
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Efficient element kernels I: Evaluation of unit cell gradient

I Form of basis functions: φ(x , y) = ϕ(x)ϕ(y)

I Evaluate unit cell derivative:

∂u(xq, yq)

∂x̂1
=

∑
i∈cell dofs

u(i)
∂φi (xq, yq)

∂x̂1
=
∑
ix

∑
iy

u(ix ,iy )ϕiy (yq)
∂ϕix (xq)

∂x̂1

I Set basis functions evaluated at all quadrature points in one
dimension into matrices

A =

ϕ1(x1) ϕ1(x2) . . .
ϕ2(x1) ϕ2(x2) . . .

...
...

. . .

 , B =

ϕ
′
1(x1) ϕ′1(x2) . . .

ϕ′2(x1) ϕ′2(x2) . . .
...

...
. . .





Efficient element kernels I: Tensor product structure in
gradient evaluation (sum factorization)

Evaluation of unit cell derivative
∂u(xq ,yq)

∂x̂1
on all quadrature points

corresponds to the matrix-vector product

∂u(xq, yq)

∂x̂1

∣∣
q points

= (A⊗ B)uK ,

where uK collects the node values on cell K . Reshape this as
matrix-matrix products to reduce complexity from O((p + 1)2d) to
O(d(p + 1)d+1)

(A⊗ B)uK = BUKA

Illustration on nodes (successively apply 1D operators):

r r r rr r r rr r r rr r r r
r r r rr r r rr r r rr r r r

tmp = B · Uk tmp · A



Efficient element kernels II: Make loop bounds known to
compiler

I Value and gradient evaluation involves many short loops of
length p + 1

I For low element degree p, this involves high loop overhead

I Introduce element degree (and number of quadrature points)
as compile-time constant in FEEvaluation → speedup 3× at
low order and 1.5× at high order



Implementation
MatrixFree class stores indices and mapping data (evaluated
geometry is cached), FEEvaluation implements element kernels
similar to FEValues.

Code example for Laplacian (∇v , a∇u):



MPI parallelization

Matrix-free algorithm including MPI:

I v ← 0

I Update ghost values: Import from other MPI processes.

I loop over cells

(i) Extract local vector values on cell, resolve constraints:
uK = PKCu

(ii) Apply operation locally on cell: vK = AKuK
(iii) Sum results from (ii) into the global solution vector, apply

constraints: v ← v + CTPT
K vK

I compress: Exchange of information along processor
boundaries.

Use specially adapted vector type
parallel::distributed::Vector that allows direct array access
in MPI-local index space (otherwise: performance penalty by factor
2− 3).



Thread parallelization
I Recall loop over all cells:

(i) Extract local vector values on cell: uK = PKCu
(ii) Apply operation locally on cell: vK = AKuk
(iii) Sum results from (ii) into the global solution vector:

v ← v + CTPT
K vK

I Tasks (i) and (ii) independent between cells, but final write
operation (iii) must be synchronized between neighbors

I To avoid serializing writes or private solution vectors
(MPI-type approach), work on non-overlapping chunks of cells
by a combination of partitioning and coloring4

I Coloring: Cells are assigned colors – cells with same color are
not adjacent. Different colors are worked on at different times.

I Partitioning: Cells are subdivided into partitions such that Pk

is only adjacent to Pk−1 and Pk+1 (Cuthill-McKee type of
partitions).

4K Kormann, M. Kronbichler: Parallel finite element operator application:
Graph partitioning and coloring. Proceedings of the 7th IEEE International
Conference on e-Science, 2011
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Partitioning and coloring: Illustration

Combining partitions on outer level with coloring within the
partitions gives good cache performance, enough chunks of cells to
keep all threads busy

Dynamic task scheduling based on this graph done by Intel’s
Threading Building Blocks



Vectorization

I Modern processors support arithmetic operations on several
data items (e.g. SSE, AVX). AVX can do operations on 4
double precision variables with one instruction

I However, data must be laid out contiguously in memory for
this to be efficient → typical array-of-structs approach that
for each cell stores local struct-like data is inefficient

I For low to medium orders, it is most efficient to place data
from several cells together in small arrays at the innermost
level (array-of-structs-of-arrays data layout)

I Vectorization with AVX speeds up computations by a factor
3.5–3.7

I Throughput devices (GPUs, Xeon Phi) have even wider vector
units, as will have future CPUs
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Computational complexity and memory in 3D

Arithmetic operations
matrix-free approach (fast
assembly) vs. sparse ma-
trices

Memory consumption
matrix-free approach vs.
sparse matrices



Performance in 3D

1.7 million degrees of freedom, 20 matrix-vector products, standard
Qp finite elements, degree 1 to 8
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Time spent in different components

3D Laplacian (∇v ,∇u) on Cartesian mesh (structured) and ball
mesh (unstructured, adaptive refinement) on Nehalem-EP:
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Scaling results

Time for one matrix-vector product with 17 million DoFs (Q2

elements), 1 to 512 cores, Nehalem-EP cluster
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Scaling results
Time for one matrix-vector product with 2.1 billion DoFs (Q2

elements), 80 to 2400 cores, Nehalem-EP cluster
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Arithmetic performance increases faster than memory
performance: actual SpMV and matrix-free data
Q2 elements, 1.7m DoFs, Laplacian (∇v ,∇u)



Arithmetic performance increases faster than memory
performance: actual SpMV and matrix-free data
Q2 elements, 1.7m DoFs, Laplacian (∇v ,∇u)

Improvement SpMV: 3.2×
Improvement MF: 9.9×



Arithmetic performance increases faster than memory
performance: actual SpMV and matrix-free data
Q2 elements, 1.7m DoFs, Laplacian (∇v ,∇u)

Parallel efficiency SpMV: 62%
Parallel efficiency MF: 85%

6 6

Parallel efficiency SpMV: 52%
Parallel efficiency MF: 79%
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Application 1: Incompressible Navier–Stokes equations

ρ

(
∂u

∂t
+ u · ∇u

)
+∇ · µ(∇u +∇uT )−∇p = ρf

∇ · u = 0

Time for evaluation of lin-
earized Navier–Stokes operator
with Q2Q1 elements in 3D in
seconds on Nehalem-EP:

MF SpMV Speedup
serial 0.293 1.30 4.4×
8 threads 0.0487 0.486 10×

Simulation of two-phase flow in
2D/3D with hp adaptivity, total
application speedup in 2D/3D

I serial: 2× / 4×
I parallel: 3× / 7×



Application 2: Time-dependent Schrödinger equation for
quantum dynamics

i
∂

∂t

(
ψa

ψb

)
=

(
Ha Va,b

V ∗a,b Hb

)(
ψa

ψb

)
H∗ = −

d∑
i=1

~2

2mi

∂2

∂x2i
+ V∗(x)

Use high order Gauss–Lobatto elements
in space and exponential integrator
(Lanczos) in time

Application speedup for Q4 over SpMV: 4.5×
Low memory consumption allows for Q6, Q7

Implementation is competitive with high order finite dif-

ferences: Q7 elements / 8th order FD by M. Gustafsson

@ Uppsala University, 11.3 million DoFs (light color) and

89.9 million DoFs (dark color)
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Summary

I Matrix-free implementation is essentially a very fast vector
assembly framework that fits both linear operators as well as
nonlinear ones (see step-48)

I Significant speedups over state-of-the-art (sparse matrices)
for element order 2 and higher due to reduced memory
consumption

I Makes higher order elements (p ≥ 3) much more attractive



Future challenges
The matrix-free implementation re-implements several of deal.II’s
algorithms in a faster but less general way

I (Parallel) loop over cells is already done in MeshWorker which
also provides complete support for face integrals (DG) → first
step would be to introduce task dependency graph concept in
other parts of deal.II.

I FEEvaluation has its own syntax but essentially does a
subset of what FEValues does. However, we need both
vectorization and compile-time information on loop lengths for
well-performing algorithms.

I Vectorization will likely become important in other parts of
programs in the near future as well.

I Also, FEEvaluation can be used to assemble sparse matrices
quickly, quicker than any other method I know (2− 3× for
Q1, 4− 25× for Q4). But it would be useful if we could
closer collaborate with the mapping data in FEValues instead
of caching it in MatrixFree.
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