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The OpenSHIP project

OpenSHIP (Supported by Regione FVG - POR FESR 2007-2013)

Partners:

CETENA (Fincantieri)

University of Trieste

SISSA

Friuli Innovazione

Spring Firm

High quality, OpenSource, CFD simulations and performance
prediction of the ship hull-propeller system.
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The ship-wave interaction problem

Main goal:

Properly estimate the wave
resistance of a ship advancing in
(calm) water

⇓

What tools?

CAD

VOF, RANS, FEM, BEM

...
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Schematic domain and boundary conditions
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Figure : The computational domain
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Three dimensional Flows

Incompressible Navier-Stokes Equations

ρ
∂v
∂t

+ ρ(v · ∇)v − ν∆v +∇p = −gez in Ω(t)

∇ · v = 0 in Ω(t)

σn = σan = pan on Γw (t)

v · n = vg · n on Γ(t) \ Γw (t)

ρ, ν, g , pa and vg : density, viscosity, gravitational body force,
atmospheric pressure and given boundary conditions

v, p: unknown velocity and pressure fields

Γ(t) := ∂Ω(t), Γw (t): boundary and (unknown) free surface
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Irrotational and invishid assumptions

For an irrotational and invishid flow, there exists a potential field
Φ, such that v = ∇Φ.

Momentum conservation =⇒ unsteady Bernoulli equation
Incompressibility =⇒ Poisson equation

Unsteady Potential Flow Equations
Perturbation Potential Decomposition

∂Φ

∂t
+

1

2
|∇Φ|2 + p − pa

ρ
+ gz = 0 in Ω(t)

∆Φ = 0 in Ω(t)

p = pa on Γw (t)

v = ∇Φ = ∇φ+ Vs − Vf

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI



Continuous Problem
Discretization

Results

Governing Equations
ALE (semi-Lagrangian) Formulation
Nonlinear Integro-Differential System

ALE (semi-Lagrangian) deformation

x = p̂ (x̂, t)

Ω̂

Ω̃

x̃

x̂

x = p̃ (x̃, t)

Ω(t) = p̂(Ω̂, t) = p̃(Ω̃, t)

x

x̂, p̂(x̂, t): Material particle and motion

x̃, p̃(x̃, t): Domain location and motion (ALE)

p̃(x̃, t) is arbitrary, provided that p̃(Ω̃, t) ≡ Ω(t)
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Material and ALE derivatives

Velocities and derivatives

v(p̂(x̂, t), t) = v̂(x̂, t) :=
∂p̂(x̂, t)

∂t

w(p̃(x̃, t), t) = w̃(x̃, t) :=
∂p̃(x̃, t)

∂t

Dq(x, t)
Dt

:=
∂q(p̂(x̂, t), t)

∂t

����
x̂=p̂−1(x,t)

=
∂q(x, t)

∂t
+ v · ∇q(x, t)

δq(x, t)
δt

:=
∂q(p̃(x̃, t), t)

∂t

����
x̃=p̃−1(x,t)

=
∂q(x, t)

∂t
+w · ∇q(x, t)

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI



Continuous Problem
Discretization

Results

Governing Equations
ALE (semi-Lagrangian) Formulation
Nonlinear Integro-Differential System

Potential Flow Equations in ALE Form

∆φ = 0 in Ω(t)

δφ

δt
+ (v −w) · ∇φ = −gz +

1

2
|∇φ|2 on Γw (t)

φ(x, 0) = φ0(x) on Γw (0)

φn = n · (Vb − Vs) on Γh(t)

φn = 0 on Γb(t) ∪ Γff (t)

w · n = v · n on Γw (t),

w · n = v · n ensures that the shape of p̃(Ω̃, t) is equal to Ω(t)

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI



Continuous Problem
Discretization

Results

Governing Equations
ALE (semi-Lagrangian) Formulation
Nonlinear Integro-Differential System

Free surface evolution

Assumption: the free surface is the graph of a single valued
function: x = (x , y , η(x , y , t)) = (x , y , η(x, t)) on Γw (t)

Material and ALE derivatives of η

∂p̂
∂t

(x̂, t) · ez =
∂η

∂t
(p̂(x̂, t), t) +

∂p̂
∂t

(x̂, t) · ∇η(p̂(x̂, t), t)

vz =
∂η

∂t
+ v · ∇η =

Dη

Dt

wz =
∂η

∂t
+w · ∇η =

δη

δt

w · n = v · n =⇒ δη

δt
+ (v −w) · ∇η = v · ez on Γw (t)
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Fully nonlinear ALE free surface boundary conditions

Vf = (Vb · ex)ex =: −V∞ = (−V∞, 0, 0), Vs = 0

Kinematic boundary condition

The shape of the free surface follows the velocity field of the flow

δη

δt
=

∂φ

∂z
+∇η · (w −∇φ− V∞)

Dynamic boundary condition

Equilibrium of the pressure on the water surface

δφ

δt
= −gη +

1

2
|∇φ|2 +∇φ · (w −∇φ− V∞)

Beck et al. (1994) (semi-Lagrangian formulation)
LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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Arbitrary Lagrangian Eulerian formulation

At each time, three coupled problems are solved:

Eulerian: a mixed b.c. Poisson problem





−∆φ = 0 in Ω(t)

φ = φ on Γw (t)

∂φ
∂n

= vg · n on Γff (t) ∪ Γb(t) ∪ Γh(t)

ALE: time evolution of the free surface b.c.

δη
δt

=
∂φ
∂z

+∇η · (w − V∞ −∇φ) on Γw (t)

δφ
δt

= −gη +
1
2
|∇φ|2 +∇φ · (w − V∞ −∇φ) on Γw (t)

ALE: reconstruction of the full ALE deformation on Γ(t)
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Boundary Integral Formulation
Exploit second Green identity

Given two solutions of the Poisson problem and a control volume
S , multiply the first equation by the second solution and integrate
by parts twice:

Second Green Identity

−∆u = 0

−∆v = f

−
�
S ∆uv = 0

�
S ∇u∇v −

�
∂S

∂u
∂nv = 0

−
�
S u∆v +

�
∂S u

∂v
∂n −

�
∂S

∂u
∂nv = 0

�
S uf +

�
∂S u

∂v
∂n −

�
∂S

∂u
∂nv = 0

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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Choose smart solutions...

Choose f to be a Dirac delta centered in y
�

S
u(x)δ(x− y)dVx = u(y) ∀y ∈ S

Boundary Integral Representation:

u(y) +
�

∂S
u(x)

∂vy
∂n

(x)dSx −
�

∂S
vy(x)

∂u

∂n
(x)dSx = 0

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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Boundary Integral Equation
Taking S ≡ Ω, and y → Γ

The Poisson problem is expressed in boundary integral form

α(y)φ(y) =
�

Γ(t)

�
∂φ

∂n
(x)G (y − x)− ∂G

∂n
(y − x)φ(x)

�
dΓx

Free space Green function G

G (x− y) =
1

4π |x− y|
It satisfies the Poisson problem

−∆G (x− y) = δ(y) x ∈ R3

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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ALE motion on the wireframe γ(t)

The normal component of the ALE velocity w · n is given by
the kinematic boundary condition

On the edges of Γ(t) (i.e., on Γ
w
(t) ∩ Γ

h
(t) =: γw ,h(t)) two

such conditions need to be satisfied simultaneously

On those edges, the third component can be imposed
arbitrarily (we can set it to zero, or to a smoothing velocity)

Evolution equation for γ(t), summarizing above conditions with wg

∂p̃γ
∂t

(x̃, t) = wg (p̃γ(x̃, t)) on γ̃

p̃γ(x̃, 0) = p̃0(x̃) on γ̃

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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ALE extension on the entire Γ(t)

Laplace Beltrami on Γ̃ (∇̃s := (I − n⊗ n)∇̃, ∆s := ∇̃s · ∇̃s)

− ∆̃s g̃ = −2ñk̃ := −∆̃s p̃0 on Γ̃ \ γ̃

g̃ = p̃γ on γ̃

∂p̃γ
∂t

(x̃, t) = wg (p̃γ(x̃, t)) on γ̃

p̃γ(x̃, 0) = p̃0(x̃) on γ̃

p̃ = Ph g̃ on Γ̃h

p̃ = Pη g̃ := g̃ + (η(g̃)− g̃ · ez )ez on Γ̃w

p̃ = g̃ on Γ̃b ∪ Γ̃ff ,

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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Reconstruction example on DTMB 5415
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Fully nonlinear integro-differential system

Given initial conditions φ0 and η0, for each time t ∈ [0,T ], find η,
φ, φn that satisfy
�

Γ(t)

∂G

∂n
φ dΓ− φ

�

Γ(t)

∂G

∂n
dΓ =

�

Γ(t)
φnG dΓ on Γ(t)

δη

δt
=

∂φ

∂z
+∇η · (w − V∞ −∇φ) =: Vη on Γw (t)

δφ

δt
= −gη +

1

2
|∇φ|2 +∇φ · (w − V∞ −∇φ) =: Vφ on Γw (t)

+B.C. on the rest of Γ(t)
+Laplace Beltrami for domain deformation.
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Discretization spaces

Grid assumptions

We construct decomposition Γ̃h for Γ̃ made of quadrilaterals in
three dimensional space, such that:

1 Γ̃ = ∪{K ∈ Γ̃h};
2 Any two cells K ,K � only intersect in common faces, edges, or

vertices;

Finite dimensional space construction (order p)

Vh :=
�
uh ∈ V

�� uh|K ∈ Qp(K ), K ∈ Γ̃h
�
≡ span{ϕi

h}
NV
i=1

Vh := V 3
h ≡ span{ϕi

hex , ϕ
i
hey , ϕ

i
hez}

NV
i=1

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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Iso-parametric finite dimensional representations

We indicate with the notation {φ} and {φn} the column vectors of
time dependent coefficients φi (t) and φn

j(t) such that

φh(x, t) :=
NV�

i=1

φi (t)ϕi
h(p̃

−1
h (x, t)) on Γh(t)

φnh(x, t) :=
NV�

i=1

φn
i (t)ϕi

h(p̃
−1
h (x, t)) on Γh(t)

where the map p̃−1
h (x, t) is the inverse of the ALE deformation

p̃h(x̃, t) :=
NV�

i=0

xi (t)ϕi
h(x̃) on Γ̃

and xk represents the current location of the vertices or control
points that define the current configuration of Γ(t).

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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Iso-parametric BEM

Collocation BEM

α(y, t)φ(y, t) =

−
M�

k=1

NV�

i=1

φi (t)

�

K̂

∂G

∂n
(y − xk(u, v , t))ϕi

k(u, v)J
k(u, v , t) du dv

+
M�

k=1

NV�

i=1

�
∂φ

∂n
(t)

�i �

K̂
G (y − xk(u, v , t))ϕi

k(u, v)J
k(u, v , t) du dv .

Take y = xi (t), rewrite as a linear system:

[α] {φ}+ [N] {φ} = [D] {φn}

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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Gradient recovery

The full gradient of φ appears in both Vφ and Vη:

Local gradient reconstruction

(∇φ)(xk(u, v , t), t) := ∇sφk(u, v , t) + φnk(u, v , t)n

Discontinuous across element edges!

We use the weak form of the evolution equation to make an L2

projection of Vφ and Vη in Vh:

�
δφh

δt
, ϕi

h

�
=(Vφ, ϕ

i
h)

�
δηh
δt

, ϕi
h

�
=(Vη, ϕ

i
h)

[M]{φ}� ={Vφ} [M]{η}� ={Vη}

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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Gradient recovery

The full gradient of φ appears in both Vφ and Vη:

Local gradient reconstruction

(∇φ)(xk(u, v , t), t) := ∇sφk(u, v , t) + φnk(u, v , t)n

Discontinuous across element edges!

We use the weak form of the evolution equation to make an L2

projection of Vφ and Vη in Vh: It doesn’t work for non
negligible stream velocity!

�
δφh

δt
, ϕi

h

�
=(Vφ, ϕ

i
h)

�
δηh
δt

, ϕi
h

�
=(Vη, ϕ

i
h)

[M]{φ}� ={Vφ} [M]{η}� ={Vη}
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Sawtooth Instability

Whenever the semi-Lagrangian free surface boundary conditions
are used with an appreciable average body velocity V∞, a
sawtooth instability develops in proximity of the hull stern causing
blow up of the simulations

δη
δt

=
∂φ
∂z

+∇η · (w − V∞ −∇φ) ←−
When V∞ is high, the
transport term in the equa-
tions becomes dominant!
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Our solution: SUPG stabilization

Substitute the weak form of the evolution equations with

Streamwise Upwind Petrov Galerkin projection

�
δφ

δt
, ϕ+ d · ∇sϕ

�
= (Vφ, ϕ+ d · ∇sϕ) ∀ϕ ∈ V

�
δη

δt
, ϕ+ d · ∇sϕ

�
= (Vη, ϕ+ d · ∇sϕ) ∀ϕ ∈ V

d := τ

�
v −w
|v −w|

�

where τ is a function of the local cell diameter

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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Fully discrete system

Essential discrete system (minus I.C. and some B.C.)

[α] {φ}+ [N] {φ} − [D] {φn} = 0

[MSUPG ]{φ}� − {Vφ,SUPG} = 0

[MSUPG ]{η}� − {Vη,SUPG} = 0

All expressed in the reference (fixed) domain Ω̃

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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Time advancing scheme

The fully discrete version of the integro-differential problem can be
recast in the form

F (t, y , y �) = 0

=⇒ system of nonlinear differential algebraic equations (DAE)
=⇒ IDA package of the SUNDIALS OpenSource library
=⇒ implicit backward difference formulas (BDF) of variable order
and variable step size:

q�

i=0

αn,iyn−i = hny
�
n,

=⇒ Nonlinear algebraic system to be solved at each step:

R(yn) ≡ F

�
tn, yn, h

−1
n

q�

i=0

αn,iyn−i

�
= 0

=⇒ Newton Krilov subspace method (preconditioned GMRES)

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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A posteriori error estimates

Kelly error estimator (Kelly et al. 1983)

For each K compute τ2K := h
24

�
∂K [∇sφ · n∂K ]2 dγ

number the cells according to decreasing values of τK ,

refine and coarsen fixed fractions of the total cells accordingly.

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI
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Test case: the Wigley hull

The Wigley hull is a boat hull shape often used as benchmark in
naval engineering

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 0.02 0.04 0.06 0.08 0.1 0.12

z 
[m

]

y [m]

y(x , z) =
B

2

�
1−

�
2x

L

�2
� �

1−
� z

T

�2
�

L = 2.5 m, B = 0.25 m, T = 0.15625 m

Fixed trim and sinkage simulations are performed at the velocities

V∞ 1.2381 1.3223 1.4312 1.5649 1.7531 2.0205

Fr =
V∞
√
gL

0.250 0.267 0.289 0.316 0.354 0.408
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Wigley Hull Fr=0.408: transient
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Wigley Hull Fr=0.408: mesh adaptation
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Wigley Hull Fr=0.408: Wave Pattern
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Wigley Hull Fr=0.408: Final Mesh (∼5000 nodes)
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Wigley Hull: Water Elevations on the Hull Surface
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Conclusions

Nonlinear, unsteady potential codes can effectively capture
several features of the physical behavior of wave-ship
interaction, making them a valid tool for cheap wave
resistance estimation in early stage of ship design

“A stable and adaptive discretization of a semi-Lagrangian
potential model for the simulation of unsteady and nonlinear
ship-wave interactions”, A. DeSimone, L. Heltai, A. Mola
Engineering Analysis with Boundary Elements, 37(1):128 -
143, 2013.
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Openings for deal.II aware people!

New Joint SISSA-ICTP Master in HPC: we are looking for
two postdocs (1 senior, 1 junior)

ERC Grant in mathLab group (Prof. Antonio
DeSImone): we are looking for both PhD Students and
Postdocs
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