Introduction

Combining BEM, ALE, DAE, FEM and SUPG in deal.II: unsteady and nonlinear ship-wave interactions

Luca Heltai, Andrea Mola, Antonio DeSimone

SISSA mathLab - International School for Advanced Studies

18-22 August 2013 IV deal.II Users Workshop

Introduction

The OpenSHIP project

OpenSHIP (Supported by Regione FVG - POR FESR 2007-2013)

Partners:

- CETENA (Fincantieri)
- University of Trieste
- SISSA
- Friuli Innovazione
- Spring Firm

High quality, OpenSource, CFD simulations and performance prediction of the **ship hull-propeller system**.

Introduction

The ship-wave interaction problem

Main goal:

Properly estimate the wave resistance of a ship advancing in (calm) water

 \Downarrow

What tools?

• CAD

VOF, RANS, FEM, BEM

LH, AM, ADS (deal.II-2013) BEM for nonlinear, unsteady, and invishid FSI

۲

Introduction

Outline

Continuous Problem

- Governing Equations
- ALE (semi-Lagrangian) Formulation
- Nonlinear Integro-Differential System

2 Discretization

- Isoparametric BEM
- SUPG Gradient Recovery
- DAE Formulation (using Sacado to compute Jacobians)
- Automatic Mesh Refinement

3 Results

- Wigley Hull
- US Navy Combatant (DTMB 5415)
- KRISO Tanker (KVLCC2M)

Governing Equations ALE (semi-Lagrangian) Formulation Nonlinear Integro-Differential System

Schematic domain and boundary conditions

Figure : The computational domain

Governing Equations ALE (semi-Lagrangian) Formulation Nonlinear Integro-Differential System

Three dimensional Flows

Incompressible Navier-Stokes Equations

$$\begin{split} \rho \frac{\partial \mathbf{v}}{\partial t} &+ \rho(\mathbf{v} \cdot \nabla) \mathbf{v} - \nu \Delta \mathbf{v} + \nabla p = -g \mathbf{e}_z & \text{in } \Omega(t) \\ \nabla \cdot \mathbf{v} &= 0 & \text{in } \Omega(t) \\ \sigma \mathbf{n} &= \sigma_a \mathbf{n} = p_a \mathbf{n} & \text{on } \Gamma^w(t) \\ \mathbf{v} \cdot \mathbf{n} &= \mathbf{v}_g \cdot \mathbf{n} & \text{on } \Gamma(t) \setminus \Gamma^w(t) \end{split}$$

- ρ, ν, g, p_a and v_g: density, viscosity, gravitational body force, atmospheric pressure and given boundary conditions
- v, p: unknown velocity and pressure fields
- $\Gamma(t) := \partial \Omega(t)$, $\Gamma^w(t)$: boundary and (unknown) free surface

Irrotational and invishid assumptions

For an irrotational and invishid flow, there exists a potential field Φ , such that $\mathbf{v} = \nabla \Phi$.

 $\begin{array}{rcl} \mbox{Momentum conservation} & \longrightarrow & \mbox{unsteady Bernoulli equation} \\ \mbox{Incompressibility} & \implies & \mbox{Poisson equation} \end{array}$

Unsteady Potential Flow Equations Perturbation Potential Decompositio

$$\begin{aligned} \frac{\partial \Phi}{\partial t} &+ \frac{1}{2} |\nabla \Phi|^2 + \frac{p - p_a}{\rho} + gz = 0 & \text{in } \Omega(t) \\ \Delta \Phi &= 0 & \text{in } \Omega(t) \\ p &= p_a & \text{on } \Gamma^w(t) \\ \mathbf{v} &= \nabla \Phi = \nabla \phi + \mathbf{V}_s - \mathbf{V}_f \end{aligned}$$

Governing Equations ALE (semi-Lagrangian) Formulation Nonlinear Integro-Differential System

ALE (semi-Lagrangian) deformation

- $\hat{\mathbf{x}}, \, \hat{\mathbf{p}}(\hat{\mathbf{x}}, t)$: Material particle and motion
- $\tilde{\mathbf{x}}$, $\tilde{\mathbf{p}}(\tilde{\mathbf{x}}, t)$: Domain location and motion (ALE)

 $\tilde{\mathbf{p}}(\tilde{\mathbf{x}},t)$ is arbitrary, provided that $\tilde{\mathbf{p}}(\tilde{\Omega},t)\equiv\Omega(t)$

Governing Equations ALE (semi-Lagrangian) Formulation Nonlinear Integro-Differential System

Material and ALE derivatives

Velocities and derivatives

$$\mathbf{v}(\hat{\mathbf{p}}(\hat{\mathbf{x}},t),t) = \hat{\mathbf{v}}(\hat{\mathbf{x}},t) := \frac{\partial \hat{\mathbf{p}}(\hat{\mathbf{x}},t)}{\partial t}$$
$$\mathbf{w}(\tilde{\mathbf{p}}(\tilde{\mathbf{x}},t),t) = \tilde{\mathbf{w}}(\tilde{\mathbf{x}},t) := \frac{\partial \tilde{\mathbf{p}}(\tilde{\mathbf{x}},t)}{\partial t}$$

$$\frac{Dq(\mathbf{x},t)}{Dt} := \left. \frac{\partial q(\hat{\mathbf{p}}(\hat{\mathbf{x}},t),t)}{\partial t} \right|_{\hat{\mathbf{x}}=\hat{\mathbf{p}}^{-1}(\mathbf{x},t)} = \frac{\partial q(\mathbf{x},t)}{\partial t} + \mathbf{v} \cdot \nabla q(\mathbf{x},t)$$
$$\frac{\delta q(\mathbf{x},t)}{\delta t} := \left. \frac{\partial q(\tilde{\mathbf{p}}(\tilde{\mathbf{x}},t),t)}{\partial t} \right|_{\tilde{\mathbf{x}}=\tilde{\mathbf{p}}^{-1}(\mathbf{x},t)} = \frac{\partial q(\mathbf{x},t)}{\partial t} + \mathbf{w} \cdot \nabla q(\mathbf{x},t)$$

Governing Equations ALE (semi-Lagrangian) Formulation Nonlinear Integro-Differential System

Potential Flow Equations in ALE Form

$$\begin{split} & \Delta \phi = 0 & \text{in } \Omega(t) \\ & \frac{\delta \phi}{\delta t} + (\mathbf{v} - \mathbf{w}) \cdot \nabla \phi = -gz + \frac{1}{2} |\nabla \phi|^2 & \text{on } \Gamma^w(t) \\ & \phi(\mathbf{x}, 0) = \phi_0(\mathbf{x}) & \text{on } \Gamma^w(0) \\ & \phi_n = \mathbf{n} \cdot (\mathbf{V}_{\rm b} - \mathbf{V}_{\rm s}) & \text{on } \Gamma^h(t) \\ & \phi_n = 0 & \text{on } \Gamma^b(t) \cup \Gamma^{\rm ff}(t) \\ & \mathbf{w} \cdot \mathbf{n} = \mathbf{v} \cdot \mathbf{n} & \text{on } \Gamma^w(t), \end{split}$$

 $\mathbf{w} \cdot \mathbf{n} = \mathbf{v} \cdot \mathbf{n}$ ensures that the shape of $\tilde{\mathbf{p}}(\tilde{\Omega}, t)$ is equal to $\Omega(t)$

Governing Equations ALE (semi-Lagrangian) Formulation Nonlinear Integro-Differential System

Free surface evolution

Assumption: the free surface is the graph of a single valued function: $\mathbf{x} = (x, y, \eta(x, y, t)) = (x, y, \eta(\mathbf{x}, t))$ on $\Gamma^w(t)$

Material and ALE derivatives of η

$$\begin{aligned} \frac{\partial \hat{\mathbf{p}}}{\partial t}(\hat{\mathbf{x}},t) \cdot \mathbf{e}_{z} &= \frac{\partial \eta}{\partial t}(\hat{\mathbf{p}}(\hat{\mathbf{x}},t),t) + \frac{\partial \hat{\mathbf{p}}}{\partial t}(\hat{\mathbf{x}},t) \cdot \nabla \eta(\hat{\mathbf{p}}(\hat{\mathbf{x}},t),t) \\ \mathbf{v}_{z} &= \frac{\partial \eta}{\partial t} + \mathbf{v} \cdot \nabla \eta = \frac{D\eta}{Dt} \\ \mathbf{w}_{z} &= \frac{\partial \eta}{\partial t} + \mathbf{w} \cdot \nabla \eta = \frac{\delta \eta}{\delta t} \end{aligned}$$

$$\mathbf{w} \cdot \mathbf{n} = \mathbf{v} \cdot \mathbf{n} \implies \frac{\delta \eta}{\delta t} + (\mathbf{v} - \mathbf{w}) \cdot \nabla \eta = \mathbf{v} \cdot \mathbf{e}_z \quad \text{on } \Gamma^w(t)$$

Continuous Problem Discretization Results Discretization Results Discretization Results

Fully nonlinear ALE free surface boundary conditions

$$\mathbf{V}_{f} = (\overline{\mathbf{V}}_{b} \cdot \mathbf{e}_{x})\mathbf{e}_{x} =: -\mathbf{V}_{\infty} = (-V_{\infty}, 0, 0), \qquad \qquad \mathbf{V}_{s} = 0$$

Kinematic boundary condition

The shape of the free surface follows the velocity field of the flow

$$\frac{\delta\eta}{\delta t} = \frac{\partial\phi}{\partial z} + \nabla\eta \cdot (\mathbf{w} - \nabla\phi - \mathbf{V}_{\infty})$$

Dynamic boundary condition

Equilibrium of the pressure on the water surface

$$rac{\delta \phi}{\delta t} = -g\eta + rac{1}{2} |
abla \phi|^2 +
abla \phi \cdot (\mathbf{w} -
abla \phi - \mathbf{V}_\infty)$$

Beck et al. (1994) (semi-Lagrangian formulation)

Arbitrary Lagrangian Eulerian formulation

At each time, three coupled problems are solved:

• Eulerian: a mixed b.c. Poisson problem

$$\begin{cases} -\Delta \phi &= 0 & \text{in } \Omega(t) \\ \phi &= \overline{\phi} & \text{on } \Gamma^{w}(t) \\ \frac{\partial \phi}{\partial n} &= \mathbf{v}_{g} \cdot \mathbf{n} & \text{on } \Gamma^{ff}(t) \cup \Gamma^{b}(t) \cup \Gamma^{h}(t) \end{cases}$$

• ALE: time evolution of the free surface b.c.

$$\frac{\delta \eta}{\delta t} = \frac{\partial \phi}{\partial z} + \nabla \eta \cdot (\mathbf{w} - \mathbf{V}_{\infty} - \nabla \phi) \qquad \qquad \text{on } \Gamma^{w}(t)$$

$$rac{\partial \phi}{\partial t} = -g\eta + rac{1}{2} |
abla \phi|^2 +
abla \phi \cdot (\mathbf{w} - \mathbf{V}_\infty -
abla \phi) \qquad ext{ on } \Gamma^w(t)$$

• ALE: reconstruction of the full ALE deformation on $\Gamma(t)$

Governing Equations ALE (semi-Lagrangian) Formulation Nonlinear Integro-Differential System

Boundary Integral Formulation Exploit second Green identity

Given two solutions of the Poisson problem and a control volume S, multiply the first equation by the second solution and integrate by parts twice:

Second Green Identity

- $-\Delta u = 0$
- $-\Delta v = f$

•
$$-\int_{S} \Delta u v = 0$$

• $\int_{S} \nabla u \nabla v - \int_{S} \frac{\partial u}{\partial v} v = 0$

•
$$\int_{S} v \, dv \, v$$
 $\int_{\partial S} \partial_n v = 0$
• $-\int_{S} u \Delta v + \int_{\partial S} u \frac{\partial v}{\partial n} - \int_{\partial S} \frac{\partial u}{\partial n} v = 0$

•
$$\int_{S} uf + \int_{\partial S} u \frac{\partial v}{\partial n} - \int_{\partial S} \frac{\partial u}{\partial n} v = 0$$

Governing Equations ALE (semi-Lagrangian) Formulation Nonlinear Integro-Differential System

Choose smart solutions...

• Choose f to be a Dirac delta centered in y

$$\int_{S} u(\mathbf{x}) \delta(\mathbf{x} - \mathbf{y}) dV_{\mathbf{x}} = u(\mathbf{y}) \quad \forall \mathbf{y} \in S$$

Boundary Integral Representation:

$$u(\mathbf{y}) + \int_{\partial S} u(\mathbf{x}) \frac{\partial v_{\mathbf{y}}}{\partial n}(\mathbf{x}) dS_{\mathbf{x}} - \int_{\partial S} v_{\mathbf{y}}(\mathbf{x}) \frac{\partial u}{\partial n}(\mathbf{x}) dS_{\mathbf{x}} = 0$$

Governing Equations ALE (semi-Lagrangian) Formulation Nonlinear Integro-Differential System

Boundary Integral Equation Taking $S \equiv \Omega$, and $\mathbf{y} \rightarrow \Gamma$

The Poisson problem is expressed in boundary integral form

$$\alpha(\mathbf{y})\phi(\mathbf{y}) = \int_{\Gamma(t)} \left[\frac{\partial \phi}{\partial n}(\mathbf{x})G(\mathbf{y} - \mathbf{x}) - \frac{\partial G}{\partial n}(\mathbf{y} - \mathbf{x})\phi(\mathbf{x}) \right] d\Gamma_{\mathbf{x}}$$

Free space Green function G

$$G(\mathbf{x}-\mathbf{y}) = rac{1}{4\pi \, \left|\mathbf{x}-\mathbf{y}
ight|}$$

It satisfies the Poisson problem

$$-\Delta G(\mathbf{x} - \mathbf{y}) = \delta(\mathbf{y}) \qquad \mathbf{x} \in \mathbf{R}^3$$

ALE motion on the wireframe $\gamma(t)$

- The normal component of the ALE velocity $\bm{w}\cdot\bm{n}$ is given by the $\bm{kinematic}$ boundary condition
- On the edges of Γ(t) (i.e., on Γ^w(t) ∩ Γ^h(t) =: γ^{w,h}(t)) two such conditions need to be satisfied *simultaneously*
- On those edges, the third component can be imposed *arbitrarily* (we can set it to zero, or to a *smoothing velocity*)

Evolution equation for $\gamma(t)$, summarizing above conditions with \mathbf{w}_g

$$\begin{split} &\frac{\partial \tilde{\mathbf{p}}_{\gamma}}{\partial t}(\tilde{\mathbf{x}},t) = \mathbf{w}_{g}(\tilde{\mathbf{p}}_{\gamma}(\tilde{\mathbf{x}},t)) & \text{ on } \tilde{\gamma} \\ &\tilde{\mathbf{p}}_{\gamma}(\tilde{\mathbf{x}},0) = \tilde{\mathbf{p}}_{0}(\tilde{\mathbf{x}}) & \text{ on } \tilde{\gamma} \end{split}$$

Governing Equations ALE (semi-Lagrangian) Formulation Nonlinear Integro-Differential System

ALE extension on the entire $\Gamma(t)$

Laplace Beltrami on $\tilde{\Gamma}$ $(\tilde{\nabla}_s := (I - \mathbf{n} \otimes \mathbf{n}) \tilde{\nabla}, \ \Delta_s := \tilde{\nabla}_s \cdot \tilde{\nabla}_s)$

$$\begin{split} &-\tilde{\Delta}_{s}\tilde{\mathbf{g}}=-2\tilde{\mathbf{n}}\tilde{k}:=-\tilde{\Delta}_{s}\tilde{\mathbf{p}}_{0} & \text{ on }\tilde{\Gamma}\setminus\tilde{\gamma}\\ &\tilde{\mathbf{z}}=\tilde{\mathbf{p}}_{\gamma} & \text{ on }\tilde{\gamma} \end{split}$$

$$\frac{\partial \tilde{\mathbf{p}}_{\gamma}}{\partial t}(\tilde{\mathbf{x}},t) = \mathbf{w}_{g}(\tilde{\mathbf{p}}_{\gamma}(\tilde{\mathbf{x}},t)) \qquad \text{on } \tilde{\gamma}$$

$$ilde{\mathbf{p}}_{\gamma}(ilde{\mathbf{x}},0) = ilde{\mathbf{p}}_0(ilde{\mathbf{x}})$$
 on $ilde{\gamma}$

$$\tilde{\mathbf{p}} = \mathcal{P}_h \, \tilde{\mathbf{g}}$$
 on $\tilde{\Gamma}^h$

$$\tilde{\mathbf{p}} = \mathcal{P}_{\eta} \, \tilde{\mathbf{g}} := \tilde{\mathbf{g}} + (\eta(\tilde{\mathbf{g}}) - \tilde{\mathbf{g}} \cdot \mathbf{e}_z) \mathbf{e}_z$$
 on $\tilde{\Gamma}^w$

 $\tilde{\mathbf{p}} = \tilde{\mathbf{g}} \qquad \qquad \text{on } \tilde{\Gamma}^b \cup \tilde{\Gamma}^{\text{ff}},$

Governing Equations ALE (semi-Lagrangian) Formulation Nonlinear Integro-Differential System

Reconstruction example on DTMB 5415

Fully nonlinear integro-differential system

Given initial conditions ϕ_0 and η_0 , for each time $t \in [0, T]$, find η , ϕ , ϕ_n that satisfy

$$\int_{\Gamma(t)} \frac{\partial G}{\partial n} \phi \, \mathrm{d}\Gamma - \phi \int_{\Gamma(t)} \frac{\partial G}{\partial n} \, \mathrm{d}\Gamma = \int_{\Gamma(t)} \phi_n G \, \mathrm{d}\Gamma \qquad \text{on } \Gamma(t)$$

$$\frac{\delta\eta}{\delta t} = \frac{\partial\phi}{\partial z} + \nabla\eta \cdot (\mathbf{w} - \mathbf{V}_{\infty} - \nabla\phi) =: \mathbf{V}_{\eta} \qquad \text{on } \Gamma^{w}(t)$$

$$\frac{\partial \phi}{\partial t} = -g\eta + \frac{1}{2} |\nabla \phi|^2 + \nabla \phi \cdot (\mathbf{w} - \mathbf{V}_{\infty} - \nabla \phi) =: \mathbf{V}_{\phi} \qquad \text{on } \Gamma^w(t)$$

+B.C. on the rest of $\Gamma(t)$ +Laplace Beltrami for domain deformation. Continuous Problem Discretization Results Automatic Mesh Refinement

Discretization spaces

Grid assumptions

We construct decomposition $\tilde{\Gamma}_h$ for $\tilde{\Gamma}$ made of quadrilaterals in three dimensional space, such that:

- $\ \, \overline{\widetilde{\Gamma}} = \cup \{ K \in \widetilde{\Gamma}_h \};$
- Any two cells K, K' only intersect in common faces, edges, or vertices;

Finite dimensional space construction (order p)

$$V_{h} := \left\{ u_{h} \in V \mid u_{h|K} \in \mathcal{Q}^{p}(K), \ K \in \tilde{\Gamma}_{h} \right\} \equiv \operatorname{span}\{\varphi_{h}^{i}\}_{i=1}^{N_{V}}$$
$$\mathbf{V}_{h} := V_{h}^{3} \equiv \operatorname{span}\{\varphi_{h}^{i}\mathbf{e}_{x}, \ \varphi_{h}^{i}\mathbf{e}_{y}, \ \varphi_{h}^{i}\mathbf{e}_{z}\}_{i=1}^{N_{V}}$$

Isoparametric BEM SUPG Gradient Recovery DAE Formulation (using Sacado to compute Jacobians) Automatic Mesh Refinement

Iso-parametric finite dimensional representations

We indicate with the notation $\{\phi\}$ and $\{\phi_n\}$ the column vectors of time dependent coefficients $\phi^i(t)$ and $\phi_n^{j}(t)$ such that

$$\phi_h(\mathbf{x}, t) := \sum_{i=1}^{N_V} \phi^i(t) \varphi_h^i(\tilde{\mathbf{p}}_h^{-1}(\mathbf{x}, t)) \quad \text{on } \Gamma_h(t)$$

$$\phi_{nh}(\mathbf{x}, t) := \sum_{i=1}^{N_V} \phi_n^i(t) \varphi_h^i(\tilde{\mathbf{p}}_h^{-1}(\mathbf{x}, t)) \quad \text{on } \Gamma_h(t)$$

where the map $\tilde{\mathbf{p}}_{h}^{-1}(\mathbf{x}, t)$ is the inverse of the ALE deformation

$$ilde{\mathbf{p}}_h(ilde{\mathbf{x}},t) := \sum_{i=0}^{N_V} \mathbf{x}^i(t) arphi_h^i(ilde{\mathbf{x}}) \qquad ext{on } ilde{\Gamma}$$

and \mathbf{x}^k represents the current location of the vertices or control points that define the current configuration of $\Gamma(t)$.

Isoparametric BEM SUPG Gradient Recovery DAE Formulation (using Sacado to compute Jacobians) Automatic Mesh Refinement

Iso-parametric BEM

Collocation BEM

$$\begin{aligned} &\alpha(\mathbf{y},t)\phi(\mathbf{y},t) = \\ &-\sum_{k=1}^{M}\sum_{i=1}^{N_{V}}\phi^{i}(t)\int_{\hat{K}}\frac{\partial G}{\partial n}(\mathbf{y}-\mathbf{x}^{k}(u,v,t))\varphi^{i}_{k}(u,v)J^{k}(u,v,t)\,\mathrm{d}u\,\mathrm{d}v \\ &+\sum_{k=1}^{M}\sum_{i=1}^{N_{V}}\left(\frac{\partial \phi}{\partial n}(t)\right)^{i}\int_{\hat{K}}G(\mathbf{y}-\mathbf{x}^{k}(u,v,t))\varphi^{i}_{k}(u,v)J^{k}(u,v,t)\,\mathrm{d}u\,\mathrm{d}v. \end{aligned}$$

Take $\mathbf{y} = \mathbf{x}^{i}(t)$, rewrite as a linear system:

$$[\alpha] \{\phi\} + [N] \{\phi\} = [D] \{\phi_n\}$$

Isoparametric BEM SUPG Gradient Recovery DAE Formulation (using Sacado to compute Jacobians) Automatic Mesh Refinement

Gradient recovery

The full gradient of ϕ appears in both V_{ϕ} and V_{η} :

Local gradient reconstruction

$$(\nabla \phi)(\mathbf{x}_k(u,v,t),t) := \nabla_s \phi_k(u,v,t) + \phi_{nk}(u,v,t)\mathbf{n}$$

Discontinuous across element edges!

We use the weak form of the evolution equation to make an L^2 projection of V_{ϕ} and V_{η} in V_h :

$$\begin{pmatrix} \frac{\delta\phi_h}{\delta t}, \varphi_h^i \end{pmatrix} = (V_\phi, \varphi_h^i) \qquad \begin{pmatrix} \frac{\delta\eta_h}{\delta t}, \varphi_h^i \end{pmatrix} = (V_\eta, \varphi_h^i)$$
$$[M]\{\phi\}' = \{V_\phi\} \qquad [M]\{\eta\}' = \{V_\eta\}$$

Isoparametric BEM SUPG Gradient Recovery DAE Formulation (using Sacado to compute Jacobians) Automatic Mesh Refinement

Gradient recovery

The full gradient of ϕ appears in both V_{ϕ} and V_{η} :

Local gradient reconstruction

$$(
abla \phi)(\mathbf{x}_k(u,v,t),t) :=
abla_s \phi_k(u,v,t) + \phi_{nk}(u,v,t) \mathbf{n}$$

Discontinuous across element edges!

We use the weak form of the evolution equation to make an L^2 projection of V_{ϕ} and V_{η} in V_h : It doesn't work for non negligible stream velocity!

$$\left(\frac{\delta \phi_h}{\delta t}, \varphi_h^i \right) = (V_\phi, \varphi_h^i)$$
$$[M] \{\phi\}' = \{V_\phi\}$$

$$\begin{pmatrix} \frac{\delta\eta_h}{\delta t}, \varphi_h^i \end{pmatrix} = (V_\eta, \varphi_h^i)$$
$$[M]\{\eta\}' = \{V_\eta\}$$

Isoparametric BEM SUPG Gradient Recovery DAE Formulation (using Sacado to compute Jacobians) Automatic Mesh Refinement

Sawtooth Instability

Whenever the semi-Lagrangian free surface boundary conditions are used with an appreciable average body velocity V_∞ , a sawtooth instability develops in proximity of the hull stern causing blow up of the simulations

Isoparametric BEM SUPG Gradient Recovery DAE Formulation (using Sacado to compute Jacobians) Automatic Mesh Refinement

Our solution: SUPG stabilization

Substitute the weak form of the evolution equations with

Streamwise Upwind Petrov Galerkin projection

$$\begin{pmatrix} \delta\phi\\ \delta t, \varphi + \mathbf{d} \cdot \nabla_{s}\varphi \end{pmatrix} = (V_{\phi}, \varphi + \mathbf{d} \cdot \nabla_{s}\varphi) \qquad \forall \varphi \in V \\ \begin{pmatrix} \delta\eta\\ \delta t, \varphi + \mathbf{d} \cdot \nabla_{s}\varphi \end{pmatrix} = (V_{\eta}, \varphi + \mathbf{d} \cdot \nabla_{s}\varphi) \qquad \forall \varphi \in V \\ \mathbf{d} := \tau \left(\frac{\mathbf{v} - \mathbf{w}}{|\mathbf{v} - \mathbf{w}|}\right)$$

where τ is a function of the local cell diameter

Isoparametric BEM SUPG Gradient Recovery DAE Formulation (using Sacado to compute Jacobians) Automatic Mesh Refinement

Fully discrete system

Essential discrete system (minus I.C. and some B.C.)

$$[\alpha] \{\phi\} + [N] \{\phi\} - [D] \{\phi_n\} = 0$$

$$[M_{SUPG}]\{\phi\}' - \{V_{\phi,SUPG}\} = 0$$

$$[M_{SUPG}]\{\eta\}' - \{V_{\eta,SUPG}\} = 0$$

All expressed in the reference (fixed) domain $\tilde{\Omega}$

Isoparametric BEM SUPG Gradient Recovery DAE Formulation (using Sacado to compute Jacobians) Automatic Mesh Refinement

Time advancing scheme

The fully discrete version of the integro-differential problem can be recast in the form

$$F(t,y,y')=0$$

 \implies system of nonlinear differential algebraic equations (DAE) \implies IDA package of the SUNDIALS OpenSource library \implies implicit backward difference formulas (BDF) of variable order and variable step size:

$$\sum_{i=0}^{q} \alpha_{n,i} y_{n-i} = h_n y'_n,$$

 \implies Nonlinear algebraic system to be solved at each step:

$$R(y_n) \equiv F\left(t_n, y_n, h_n^{-1} \sum_{i=0}^q \alpha_{n,i} y_{n-i}\right) = 0$$

→ Newton Krilov subspace method (preconditioned GMRES)

Isoparametric BEM SUPG Gradient Recovery DAE Formulation (using Sacado to compute Jacobians) Automatic Mesh Refinement

A posteriori error estimates

Kelly error estimator (Kelly et al. 1983)

- For each K compute $\tau_K^2 := \frac{h}{24} \int_{\partial K} [\nabla_s \phi \cdot \mathbf{n}_{\partial K}]^2 \, \mathrm{d}\gamma$
- number the cells according to decreasing values of τ_{K} ,
- refine and coarsen fixed fractions of the total cells accordingly.

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Test case: the Wigley hull

The Wigley hull is a boat hull shape often used as benchmark in naval engineering

$$y(x,z) = \frac{B}{2} \left[1 - \left(\frac{2x}{L}\right)^2 \right] \left[1 - \left(\frac{z}{T}\right)^2 \right]$$
$$L = 2.5 \text{ m}, \quad B = 0.25 \text{ m}, \quad T = 0.15625 \text{ m}$$

Fixed trim and sinkage simulations are performed at the velocities

V_{∞}	1.2381	1.3223	1.4312	1.5649	1.7531	2.0205
$Fr = \frac{V_{\infty}}{\sqrt{gL}}$	0.250	0.267	0.289	0.316	0.354	0.408

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Wigley Hull Fr=0.408: transient

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Wigley Hull Fr=0.408: mesh adaptation

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Wigley Hull Fr=0.408: Wave Pattern

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Wigley Hull Fr=0.408: Final Mesh (~ 5000 nodes)

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Fr = 0.267

Wigley Hull: Water Elevations on the Hull Surface

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

CAD Interface for Arbitrary Geometries

- OpenCASCADE library for NURBS manipulation
- Automatic mesh generation via direct CAD interrogation

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

CAD Interface for Arbitrary Geometries

- OpenCASCADE library for NURBS manipulation
- Automatic mesh generation via direct CAD interrogation

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

CAD Interface for Arbitrary Geometries

- OpenCASCADE library for NURBS manipulation
- Automatic mesh generation via direct CAD interrogation

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Goteborg DTBM 5415 (Fr=0.2) First attempts

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Goteborg DTBM 5415 (Fr=0.2) (2) First attempts

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Goteborg DTBM 5415 (Fr=0.2) (3) First attempts

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Goteborg DTBM 5415 (Fr=0.2)

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Goteborg DTBM 5415 (Fr=0.2) (2)

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Goteborg DTBM 5415 (Fr=0.28)

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Goteborg DTBM 5415 (Fr=0.28) (2)

Side View of Mesh Refinement

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Goteborg DTBM 5415 (Fr=0.28) Waterline

Experimental Comparison (wrong weight!!!)

DTMB-5415 Water Line Fr=0.28

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

KRISO Tanker KVLCC2M (Fr=0.142) Waterline

Experimental Comparison

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Conclusions

- Nonlinear, unsteady potential codes can effectively capture several features of the physical behavior of wave-ship interaction, making them a valid tool for cheap wave resistance estimation in early stage of ship design
- "A stable and adaptive discretization of a semi-Lagrangian potential model for the simulation of unsteady and nonlinear ship-wave interactions", A. DeSimone, L. Heltai, A. Mola Engineering Analysis with Boundary Elements, 37(1):128 -143, 2013.

Wigley Hull US Navy Combatant (DTMB 5415) KRISO Tanker (KVLCC2M)

Openings for deal.II aware people!

- New Joint SISSA-ICTP Master in HPC: we are looking for two postdocs (1 senior, 1 junior)
- ERC Grant in mathLab group (Prof. Antonio DeSImone): we are looking for both PhD Students and Postdocs