
Parallel Linear Algebra in deal.II

Timo Heister, Clemson University
heister@clemson.edu

2013-08-20
4th deal.II workshop, College Station, TX

heister@clemson.edu

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

What is this talk about?

Guide: parallel computations

Explain recent changes in linear algebra

Status and ideas for future work

Content:

1. How to parallelize?

2. Distributed meshes

3. Parallel linear algebra

Bangerth, Burstedde, Heister, and Kronbichler.
Algorithms and Data Structures for Massively Parallel Generic Finite Element
Codes.
ACM Trans. Math. Softw., 38(2), 2011.

2

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Motivation

(temperature snapshot, 700,000 degrees of freedom, 2d simulation)

ASPECT: http://www.dealii.org/aspect/
Global mantle convection in the Earth’s mantle
3d computations, adaptive meshes, 100 million+ DoFs
Need: fast refinement, partitioning

Kronbichler, Heister, and Bangerth.
High Accuracy Mantle Convection Simulation through Modern Numerical
Methods.
Geophysical Journal International, 2012, 191, 12-29.

3

http://www.dealii.org/aspect/

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Parallel Computing Model

System:
nodes connected via fast network

Model: MPI (+multithreading)

CPU 1CPU 0

Memory

Node

CPU 1CPU 0

Memory

Node

Network

DATA

send() recv()

4

IBM Sequoia, 1.5 million cores,
source: nextbigfuture.com

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

How To?

Required: split up the work!

Goal: get solutions faster, allow larger problems

Who needs this?

Advice: < 500′000 DoFs and 2d is fine without parallel linear
algebra, use a direct solver
if not: listen!

From laptop to supercomputer

5

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Scalability

Scalability?
(you should know about weak/strong scaling, parallel efficiency,
hardware layouts, NUMA, interconnects, . . .)

Required for Scalability:

Distributed data storage everywhere
 need special data structures

Efficient algorithms
 not depending on total problem size

“Localize” and “hide” communication
 point-to-point communication, nonblocking sends and
receives

6

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Overview of Data Structures and Algorithms

Needs to be parallelized:

1. Triangulation (mesh with associated data)
— hard: distributed storage, new
algorithms

2. DoFHandler (manages degrees of freedom)
— hard: find global numbering of DoFs

3. Linear Algebra (matrices, vectors, solvers)
— use existing library

4. Postprocessing (error estimation, solution
transfer, output, . . .)
— do work on local mesh, communicate

unit cell

Triangulation
Finite Element,
Quadratures,
Mapping, ...

DoFHandler

linear algebra

post processing

7

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

How to do Parallelization?

Option 1: Domain Decomposition

Split up problem on PDE level

Solve subproblems independently

Converges against global solution

Problems:

Boundary conditions are problem dependent:
 sometimes difficult!
 no black box approach!
Without coarse grid solver:
condition number grows with # subdomains
 no linear scaling with number of CPUs!

8

ΓΩ1
Ω2

1

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

How to do Parallelization?

Option 2: Algebraic Splitting

Split up mesh between processors:

Assemble logically global linear system
(distributed storage):

Solve using iterative linear solvers in parallel

Advantages:

Looks like serial program to the user
Linear scaling possible (with good preconditioner)

9

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Partitioning

Optimal partitioning (coloring of cells):

same size per region
 even distribution of work

minimize interface between region
 reduce communication

Optimal partitioning is an NP-hard
graph partitioning problem.

Typically done: heuristics (existing tools: METIS)

Problem: worse than linear runtime

Large graphs: several minutes, memory restrictions

 Alternative: avoid graph partitioning

10

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Partitioning using Space-Filling Curves

p4est library: parallel quad-/octrees

Store refinement flags from a base mesh

Based on space-filling curves

Very good scalability

Burstedde, Wilcox, and Ghattas.
p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of
octrees.
SIAM J. Sci. Comput., 33 no. 3 (2011), pages 1103-1133.

11

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Triangulation

Partitioning is cheap and simple:

#1

#2

Then: take p4est refinement information

Recreate rich deal.II Triangulation only for local cells
(stores coordinates, connectivity, faces, materials, . . .)

How? recursive queries to p4est

Also create ghost layer (one layer of cells around own ones)

12

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Example: Distributed Mesh Storage

=

& &

Color: owned by CPU id
13

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Arbitrary Geometry and Limitations

Curved boundaries using higher order mappings
Arbitrary geometry

Limitations:

Only regular refinement
Limited to quads/hexas
Coarse mesh duplicated
on all nodes

14

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

In Practice

How to use?

Replace Triangulation by
parallel::distributed::Triangulation

Continue to load or create meshes as usual

Adapt with GridRefinement::refine and coarsen* and
tr.execute coarsening and refinement(), etc.

You can only look at own cells and ghost cells:
cell->is locally owned(), cell->is ghost(), or
cell->is artificial()

Of course: dealing with DoFs and linear algebra changes!

15

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Meshes in deal.II

serial mesh dynamic parallel mesh static parallel mesh

name Triangulation
parallel::distributed
::Triangulation

(just an idea)

duplicated everything coarse mesh nothing

partitioning METIS p4est: fast, scalable offline, (PAR)METIS?

part. quality good okay better?

hp? yes (planned) yes?

geom. MG? yes in progress ?

Aniso. ref.? yes no (offline only)

Periodicity yes in progress ?

Scalability 100 cores 16k+ cores ?

16

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Distributing the Degrees of Freedom (DoFs)

Create global numbering for all DoFs

Reason: identify shared ones

Problem: no knowledge about the whole mesh

Sketch:

1. Decide on ownership of DoFs on interface (no communication!)

2. Enumerate locally (only own DoFs)

3. Shift indices to make them globally unique (only communicate
local quantities)

4. Exchange indices to ghost neighbors

17

0 1

2 3

4

5

6 7 8

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Linear Algebra: Short Version

Want to go matrix-free?
 use parallel::distributed::Vector/etc., look at
step-48, and talk to Martin Kronbichler

This is what I normally tell:

Use distributed matrices and vectors
(PETScWrappers::Vector/etc. or
TrilinosWrappers::Vector/etc.)
Assemble local parts (some communication on interfaces)
Solve (preconditioners!)
Done.

18

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Longer Version

Example: Q2 element and ownership of DoFs

What might red CPU be interested in?

19

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Longer Version: Interesting DoFs

owned

active

relevant

(perspective of the red CPU)

20

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

DoF Sets

Each CPU has sets:

owned: we store vector and matrix entries of these rows
active: we need those for assembling, computing integrals,
output, etc.
relevant: error estimation

These set are subsets of {0, . . . ,n global dofs}
Represented by objects of type IndexSet

How to get? DoFHandler::locally owned dofs(),
DoFTools::extract locally relevant dofs(),
DoFHandler::locally owned dofs per processor(), . . .

21

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Vectors/Matrices

reading from owned rows only (for both vectors and matrices)

writing allowed everywhere (more about compress later)

what if you need to read others?

Never copy a whole vector to each machine!

instead: ghosted vectors

22

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Ghosted Vectors

read-only

create using
Vector(IndexSet owned, IndexSet ghost, MPI COMM)

where ghost is relevant or active

copy values into it by using operator=(Vector)

then just read entries you need

23

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Compressing Vectors/Matrices

Why?

After writing into foreign entries communication has to happen
All in one go for performance reasons

How?

object.compress (VectorOperation::add); if you added
to entries
object.compress (VectorOperation::insert); if you set
entries
This is a collective call

When?

After the assembly loop (with ::add)
After you do vec(j) = k; or vec(j) += k; (and in between
add/insert groups)
In no other case (all functions
inside deal.II compress if necessary)!
(this is new!)

24

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Trilinos vs. PETSc

What should I use?

Similar features and performance

Pro Trilinos: more development, some more features
(automatic differentation, . . .), cooperation with deal.II

Pro PETSc: stable, easier to compile on older clusters

But: being flexible would be better! – “why not both?”

you can! Example: new step-40

can switch at compile time
need #ifdef in a few places (different solver parameters
TrilinosML vs BoomerAMG)
some limitations, somewhat work in progress

25

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

1 #inc l u d e <d e a l . I I / l a c / g e n e r i c l i n e a r a l g e b r a . h>
2 #de f i n e USE PETSC LA // uncomment t h i s to run wi th T r i l i n o s
3
4 namespace LA
5 {
6 #i f d e f USE PETSC LA
7 u s i n g namespace d e a l i i : : L inearAlgebraPETSc ;
8 #e l s e
9 u s i n g namespace d e a l i i : : L i n e a r A l g e b r a T r i l i n o s ;

10 #end i f
11 }
12
13 // . . .
14 LA : : MPI : : S p a r s e M a t r i x s y s t e m m a t r i x ;
15 LA : : MPI : : V e c t o r s o l u t i o n ;
16
17 // . . .
18 LA : : SolverCG s o l v e r (s o l v e r c o n t r o l , mpi communicator) ;
19 LA : : MPI : : Precondit ionAMG p r e c o n d i t i o n e r ;
20
21 LA : : MPI : : Precondit ionAMG : : A d d i t i o n a l D a t a data ;
22
23 #i f d e f USE PETSC LA
24 data . s y m m e t r i c o p e r a t o r = t r u e ;
25 #e l s e
26 // t r i l i n o s d e f a u l t s a r e good
27 #end i f
28 p r e c o n d i t i o n e r . i n i t i a l i z e (s y s t e m m a t r i x , data) ;
29
30 // . . .

26

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Linear Solvers

Iterative solvers only need Mat-Vec products and scalar
products
 equivalent to serial code

Can use templated deal.II solvers like GMRES!

Better: use tuned parallel iterative solvers that hide/minimize
communication

Preconditioners: more work, just operating on local blocks not
enough

27

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Hybrid

hybrid = MPI between nodes, multithreading inside node

Advantage: save memory (important in the future, see
Guido’s talk)

Bottleneck in codes: Preconditioners

Inside PETSc/Trilinos: preconditioners are not multithreaded
 not worth it today

But we are ready: multithreading in assembly, etc.

28

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Strong Scaling: 2d Adaptive Poisson Problem

 0.01

 0.1

 1

 10

 100

 1000

 128 256 512 1024 2048 4096 8192 16384

W
a

ll
ti
m

e
 [

s
e

c
o

n
d

s
]

Number of processors

Wall clock times for problem of fixed size 335M

linear solver
copy to deal.II

error estimation
assembly
init matrix

sparsity pattern
coarsen and refine

29

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Test: Memory Consumption

8 16 40 80 120 200 240 360 480 720 1016

1400

1500

1600

1700

1800

1900

2000

2100

avg
max

#CPUs

m
e

m
 /

M
B

average and maximum memory consumption (VmPeak)
3D, weak scalability from 8 to 1000 processors with about 500.000

DoFs per processor (4 million up to 500 million total)

 Constant memory usage with increasing
CPUs & problem size

30

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

step-42: Plasticity

8 16 32 64 128 256 512 1024

10−2

10−1

100

101

102

103

104

Number of Cores

W
al
l
ti
m
e
(s
ec
on

d
s)

Strong Scaling (9.9M DoFs)

8 16 32 64 128 256 512 1024

100

101

102

103

104

105

Number of Cores

W
al
l
ti
m
e
(s
ec
o
n
d
s)

Weak Scaling (1.2M DoFs/Core)

TOTAL Solve: iterate Assembling Solve: setup
Residual update active set Setup: refine mesh Setup: matrix

Setup: distribute DoFs Setup: vectors Setup: constraints

31

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Postprocessing, . . .

Not covered today:

Error estimation

Decide over refinement and coarsening (communication!)

Handling hanging nodes and other constraints

Solution transfer (after refinement and repartitioning)

Parallel I/O

32

Introduction Mesh Distributing DoFs Linear Algebra Misc Num. Results Conclusion

Ideas:

Geometric multigrid (parallel, adaptive) together with Guido

Hp in parallel (any takers?)

Old Tria: implement IndexSets

Hybrid parallelization, petascale, accelerators?

Thanks for your attention!

33

Additional Material

Test: memory consumption

1 512

0

50

100

150

200

250

300

350

Triangulation
p4est
DofHandler
Constraints
Matrix
Vector

CPUs

m
e

m
o

ry
 in

 M
B

3D, memory usage per object, weak scaling

34

Additional Material

What is ASPECT?

ASPECT = Advanced Solver for Problems in Earth’s ConvecTion

Modern numerical methods

Open source, C++: http://www.dealii.org/aspect/

Based on the finite element library deal.II

Supported by CIG

Main author

Bangerth and Heister.
ASPECT: Advanced Solver for Problems in Earth’s ConvecTion, 2012.
http://www.dealii.org/aspect/.

Kronbichler, Heister and Bangerth.
High Accuracy Mantle Convection Simulation through Modern Numerical
Methods.
Geophysical Journal International, 2012, 191, 12-29.

35

http://www.dealii.org/aspect/
http://www.dealii.org/aspect/

	Introduction
	Introduction

	Mesh
	p4est
	Summary

	Distributing DoFs
	Linear Algebra
	Misc
	Num. Results
	Numerical Results

	Appendix
	Additional Material

