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Introduction

We consider the stream function approach to the solution of the

stationary Navier-Stokes equations in two dimensions. This leads to

a nonlinear biharmonic equation for the stream function.

Starting with the Navier-Stokes equations one can build the Poisson

equation for the pressure.

Corner singularities restrict the regularity of the stream function and

hence the pressure. A very weak formulation of the Poisson equation

is required.
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Derivation of the streamfunction formulation (1)

The Navier-Stokes equations in two dimensions:

For given data f , v∂ and ν �nd {v , p} ∈ H1(Ω)2 × L2(Ω), such that

ν(∇v ,∇ϕ) + ((v · ∇)v , ϕ)− (p,∇ · ϕ) = (f , ϕ) for all ϕ ∈ H1

0 (Ω)2

(∇ · v , q) = 0 for all q ∈ L2(Ω)

We impose Dirichlet boundary conditions on ∂Ω \ Γout for the
velocity v .

On Γout we don't prescribe any boundary conditions. There we �nd

the natural condition

ν∂nv − pn = 0,

which arranges the pressure p.
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Derivation of the streamfunction formulation (2)

Helmholtz decomposition yields:

There exists a scalar stream function Ψ corresponding to the

velocity v , such that curl(Ψ) = v is valid.

Similarly for each test function ϕ exists a scalar test function Φ such

that curl(Φ) = ϕ is valid.

For these new variables the problem is:

Find Ψ ∈ H2(Ω), such that for all Φ ∈ H2
0

(Ω) holds

ν(∇ curlΨ,∇ curlΦ) + ((curlΨ · ∇) curlΨ, curlΦ) = (f , curlΦ). (1)

The corresponding boundary conditions for the stream function result

from the boundary conditions for the velocity v using the relation

curlΨ = v .

Ψ∂(s) = Ψ∂(a) +

∫ s

a

v∂n (s) ds, (∂nΨ)∂(s) = v∂t (s) on ∂Ω.
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Bogner-Fox-Schmidt element

We solve the stream function problem with a H2
0

(Ω)-conforming element

(implemented in deal.II by Bärbel Janssen).

Figure: C 1 element

Polynomial and ansatz space

P(T ) = Q3(T )

Vh = {Φh ∈ L2(Ω) : Φh|T ∈ P(T ), Φh,∇Φh and ∂1∂2Φh contininuous

in corners of T , Φh = ∂nΦh = ∂1∂2Φh = 0 in corners on ∂Ω}.
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Flow channel con�guration (1)

(0,0)

(10,5)

(3,3)

(2,2)
Γ1 Γout

Γ0

Figure: Con�guration with an obstacle, Ω = ((0, 10)× (0, 5)) \ [2, 3]2

We impose Dirichlet boundary conditions for v with a parabolic �ow

pro�le. We describe the outer and inner boundary with Γ0 bzw. Γ1. The

conditions for Ψ are:

Ψ(x , y) = −
y3

3
+

5y2

2
, on Γ0 \ Γout,

∂tΨ(x , y) = 0 on Γ1

∂nΨ(x , y) = 0 on (Γ0 \ Γout) ∪ Γ1
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Flow channel con�guration (2)

For implementing the condition on the inner part of the boundary we use

the ConstraintMatrix class (in deal.II). The dofs on the inner boundary

are set to be equal.

un s i g n e d i n t h e l p = f i r s t_bounda r y_do f ;
f o r ( u n s i g n e d i n t i = f i r s t_bounda r y_do f +1;

i <do f_hand l e r . n_dofs ( ) ; ++ i )
{

i f ( boundary_dofs [ i ] == t r u e && i %4==0)
{

c o n s t r a i n t s . add_ l i n e ( i ) ;
c o n s t r a i n t s . add_entry ( i , h e l p , 1) ;
h e l p= i ;

}
}
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Flow channel con�guration (3)

We linearize with Newton's method. In each Newton step we solve the

unsymmetric system with the biCGstab method. For preconditioning we

use geometric multigrid which is implented in deal.II. By convenience the

data is set f ≡ 0 and ν = 1.

(a) Threedimensional View (b) Streamlines

Figure: Stream function on 802 816 cells with 3 219 968 dofs
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Regularity of the stream function

Following Blum and Rannacher the weak solution of the stream function

problem can be written as

Ψ(r , Φ) =
∑

1<Re zk<3
q=0,...,mk−1

ak r
zk lnq r Ψk(Φ) + w(r , Φ)

with a regular part w ∈ C3(Ω) and singular parts

ak r
zk lnq r Ψk(Φ). (2)

The zk are certain complex zeros in the intervall (1, 3) with multiplicities

mk . In equation (2) the term rRe zk dominates the others. One �nds

Re zk ≈ 1.5445 for a maximal inner angle of 270◦ and with the boundary

conditions given above. This leads to the regularity Ψ ∈ H2.5445(Ω).
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Results, error estimates and convergence table

Error analysis gives us the erstimates

‖Ψ − Ψh‖2 ≤ ch0.5445‖Ψ‖2.5445,
‖Ψ − Ψh‖1 ≤ ch1.089‖Ψ‖2.5445,
‖Ψ − Ψh‖0 ≤ ch1.089‖Ψ‖2.5445.

From the simulation we get

# cells # dofs ‖Ψ − Ψh‖2 ‖Ψ − Ψh‖1 ‖Ψ − Ψh‖

12544 51264 2.6918 0.57 0.0878 1.21 0.0361 1.10

50176 202880 1.8393 0.55 0.0395 1.15 0.0170 1.09

200704 807168 1.2600 0.55 0.0181 1.12 0.0080 1.09

802816 3219968 0.8636 0.54 0.0084 1.11 0.0038 1.09
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Pressure Poisson equation (1)

We start with the momentum equation strongly formulated

∇p = f + ν∆v − (v · ∇)v . (3)

We apply the divergence operator on both sides and get

−∆p = div ((v · ∇)v)− div f = 2{(∂1∂2Ψ)2 − ∂21Ψ∂22Ψ} − div f =: f̃ ,
(4)

where we used div v = 0.

The boundary conditions for this problem follow by multiplying (3) with

the tangential unity vector τ and integrating over a parametrization of

∂Ω.

p(s) = p(a) +

∫ s

a

τ · {f + ν∆v − (v · ∇)v}ds

= p(a) +

∫ s

a

τ · {f + ν∆ curlΨ − (curlΨ · ∇) curlΨ} ds,
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Pressure Poisson equation (2)

As seen above we analyzed the corner singularities of the stream function

formulation. For the pressure we receive the regularity p ∈ H0.5445, for

which even the weak formulation of (4) doesn't make any sense.

Following Berggren we de�ne the ansatz spaces

Vh := {vh ∈ L2(Ω) : vh ∈ Q1(T ), vh continuous in corners of T}
γVh := {v|∂Ω : v ∈ Vh}
V 0

h := {v ∈ Vh : v|∂Ω = 0}

Consider the following problem:

Find ph ∈ Vh, such that for all vh ∈ V 0

h holds∫
T

∇ph · ∇vh dx =

∫
T

f̃ vh dx for all T

ph = P
γ
h p on ∂Ω.

With P
γ
h p we describe the L2(∂Ω) projection of p on γVh.
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Flow channel con�guration (1)

As we have seen the pressure boundary values have to be projected on

the boundary. Because we get the pressure values by integrating, we have

two nested integrals, i.e. we have to integrate between two quadrature

points. The way of integration is extremly constrained by the character

of the domain.

DoFHandler <2 >:: a c t i v e _ c e l l _ i t e r a t o r
c e l l = do f_hand l e r . b e g i n_a c t i v e ( ) ,
endc = do f_hand l e r . end ( ) ;

DoFHandler <2 >:: a c t i v e _ c e l l _ i t e r a t o r
c e l l_c1 = dof_hand le r_c1 . b e g i n_a c t i v e ( ) ;

f o r ( ; c e l l −>v e r t e x (2 ) != Po int <2> (0 , 5 ) ;
c e l l = c e l l −>ne i g h b o r (3 ) ,
c e l l_c1=ce l l_c1−>ne i g h b o r (3 ) )

{ . . . }
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Flow channel con�guration (2)

We already know where the singularities lie. Integrating past a singularity

would cause an error. The values for the pressure on outer and inner

boundary are coupled through the momentum equation in the domain.

Γ0

Γ1

Figure: Integration scheme for the pressure boundary values
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Flow channel con�guration (3)

We solve the Poisson equation for the pressure with the CG-method. For

preconditioning we use again geometric multigrid.

Figure: Pressure on 802 816 cells with 3 215 616 dofs
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Results, error estimate and convergence table

Berggren shows in his error analysis

‖p − ph‖0 ≤ ch0.167‖p‖0.167.

The simulation yields

# cells # dofs ‖p − ph‖

3136 3272 4.28034 0.99

12544 12816 2.65824 0.69

50176 50720 1.83812 0.53

200704 201792 1.29853 0.50

802816 804992 0.91236 0.51

It seems that the error estimate is not optimal.
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Solution methods

We try to compare the results with a reference solution of the

Navier-Stokes equations solved with the Taylor-Hood element.

Newton algebr. MG geometr. MG Solver

stream function × × bi-CG-stab

Poisson × CG

Navier-Stokes × × GMRES

For solving the Navier-Stokes equations directly, we linearize them with

Newton's method. In each Newton step we solve a block system with

GMRES. The block corresponding to the velocity is inverted with the

algeraic multigrid method of TRILINOS.
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H
1-error of the pressure

We compare the divergence.

# cells ‖p − ph‖1 (Poisson) ‖p − ph‖1 (NS)

784 61.79549 - 95.2912 -

3136 63.81686 -0.05 112.0709 -0.23

12544 74.97395 -0.23 145.5773 -0.38

50176 95.60175 -0.35 196.1232 -0.43

200704 126.67627 -0.41 267.3613 -0.45

802816 170.79257 -0.43 365.9326 -0.45

The error of the Poisson problem starts with smaller values compared to

the error of the direct solution.
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Comparison with the reference solution, graphics

(a) Reference solution with Taylor-Hood

(b) Poisson problem

Figure: Pressure on 802 816 cells
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Comparison with the reference solution, time

# cells stream function press via Poisson NS direct

assmbl. solve assmbl. solve assmbl. solve

3136 0.8 7.7 0.02 0.0001 1.1 15.7

12544 3.1 55.7 0.06 0.0200 4.5 77.7

50176 12.7 349.4 0.20 0.3960 18.1 403.7

200704 49.3 1444.2 0.67 6.3004 70.2 1769.4

802816 196.1 7835.4 2.53 55.1194 452.7 12754.4

Table: Time in sec for assembling the matrix and the right hand side, and for

solving the algebraic system

Introducing a stream function will lead to faster calculation than direct

solving the Navier-Stokes equations.

Christoph Weiler Nonlinear biharmonic equation and very weak Laplace problem August 23, 2010 25



Conclusion

We can solve nonlinear biharmonic equations like the stream

function formulation of the Navier-Stokes equations.

We are able to solve very weak Poisson problems like the pressure

Poisson equation.

Introducing a stream function and recover the pressure through a

Poisson equation o�ers an alternative way to solve the

Navier-Stokes equations.

But,

global re�nement is not optimal.

boundary conditions for the pressure cause errors, for which higher

re�nement is needed.
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Thank you for your time!
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