
Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Generic and efficient solvers for coupled
flow/transport problems

Martin Kronbichler

Division of Scientific Computing
Department of Information Technology

Uppsala University
Sweden

August 24, 2010

M. Kronbichler, IT @ Uppsala (1 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Problem setting
Applications

Program design
Modularity
Linear algebra for flow solvers

What I did to make my programs run (a bit) faster
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

M. Kronbichler, IT @ Uppsala (2 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Simulation of coupled flow/transport problems

I Incompressible flow, described by incompressible
Stokes/Navier–Stokes systems in velocities u and
pressure p

I Equation of transport type (convection,
convection–diffusion) due to flow field

I Transported variable induces force in fluid’s
momentum equation

I Two-way coupling (active, not just passive transport)

M. Kronbichler, IT @ Uppsala (3 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Simulation of coupled flow/transport problems

I Incompressible flow, described by incompressible
Stokes/Navier–Stokes systems in velocities u and
pressure p

I Equation of transport type (convection,
convection–diffusion) due to flow field

I Transported variable induces force in fluid’s
momentum equation

I Two-way coupling (active, not just passive transport)

M. Kronbichler, IT @ Uppsala (3 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Example problem: Boussinesq model (step-31
& step-32)

Stokes system driven by buoyancy:

−∇ · (2η∇s(u)) +∇p = ρ(T )g

∇ · u = 0

Temperature field transported by fluid

∂T

∂t
+ u · ∇T − κ∇2T = γ

Coupling:

I T in momentum equation

I u in transport equation

M. Kronbichler, IT @ Uppsala (4 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Example problem: Boussinesq model (step-31
& step-32)

Stokes system driven by buoyancy:

−∇ · (2η∇s(u)) +∇p = ρ(T )g

∇ · u = 0

Temperature field transported by fluid

∂T

∂t
+ u · ∇T − κ∇2T = γ

Coupling:

I T in momentum equation

I u in transport equation

M. Kronbichler, IT @ Uppsala (4 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Applications of flow/transport type I

I Motion of magma in earth mantle: Boussinesq
problem (step-31 & step-32) — Stokes coupled to
temperature convection–diffusion equation, buoyancy
drives flow by force term of form Tg

Temperature field in earth mantle convection, step-31

M. Kronbichler, IT @ Uppsala (5 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Applications of flow/transport type II

I Two-phase flow modeled by level set models:
Navier–Stokes coupled to level set convection
equation in φ, interface force δhn(φ)κ(φ)

Bubble of low density rises due to gravity

M. Kronbichler, IT @ Uppsala (6 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Applications of flow/transport type III

I Solidification processes, liquid phase sintering, etc.:
Navier–Stokes coupled to phase field model
(Cahn–Hilliard equation) and possibly temperature,
interface force from Cahn–Hilliard variables

Pressure and velocity magnitude of phase field flow in a channel

M. Kronbichler, IT @ Uppsala (7 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Programming challenges with this kind of
problems

I Different models (e.g. level set, phase field) for same
problem and same fluid solver

I Different fluid models (Stokes or Navier–Stokes) for
same transport equation

I Different flow solvers (projection/fractional-step
solver, fully coupled implicit/explicit solver, fully
coupled solver with Newton iteration)

All this combined with adaptive mesh refinement, 3D
simulations (large scale problems), etc.

M. Kronbichler, IT @ Uppsala (8 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Programming challenges with this kind of
problems

I Different models (e.g. level set, phase field) for same
problem and same fluid solver

I Different fluid models (Stokes or Navier–Stokes) for
same transport equation

I Different flow solvers (projection/fractional-step
solver, fully coupled implicit/explicit solver, fully
coupled solver with Newton iteration)

All this combined with adaptive mesh refinement, 3D
simulations (large scale problems), etc.

M. Kronbichler, IT @ Uppsala (8 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

How to design modular programs for this
problem type

Requirements:

I Want to use one implementation of fluid solver for
different application types and transport evolution
equations (keep all variants with most current fluid
solver, reduce duplicated code)

I Make change of fluid solver simple

Algorithm outline

Discretize in time by a time lag scheme: first update
transport equation based on extrapolated velocity, then
flow equations based on new right hand side

M. Kronbichler, IT @ Uppsala (9 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

How to design modular programs for this
problem type

Requirements:

I Want to use one implementation of fluid solver for
different application types and transport evolution
equations (keep all variants with most current fluid
solver, reduce duplicated code)

I Make change of fluid solver simple

Algorithm outline

Discretize in time by a time lag scheme: first update
transport equation based on extrapolated velocity, then
flow equations based on new right hand side

M. Kronbichler, IT @ Uppsala (9 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Generic flow solver interface

Fluid solver
Stokes, NS-Newton,
NS-IMEX,
NS-projection, . . .

Set outside solver�
�

�
�Geometry:

Triangulation<dim>&����� ��Boundary conditions:
ConstraintMatrix access

XXX�



�
	Forcing terms:

Access to user vector, filled by some
standard assembly routine

Q
QQ

Provided methods

�
�

�
�

Setup DoFs
functions:

Init DoFHandler
Create matrices,

vectors

�
�
�
�
� �

�
�


Init advance:
Extrapolate

solution to new
time step

T
T
T
T
TT �

�
�


Do advance:
Assembles and solves
fluid system, Newton

iteration

c
c
c
c
c
cc �

�
�
�

Refinement
functions:

Transfers solutions,
simple refinement

criteria

HH
HHH

HHH
HH

M. Kronbichler, IT @ Uppsala (10 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Linear algebra for flow solvers

For blocked systems use GMRES with Schur complement
preconditioners

I Stokes:

P−1 =

(
A−1

AMG A−1
AMGBM

−1
p

0 M−1
p

)
with pressure mass matrix Mp as Schur complement
approximation

Collaboration with Wolfgang Bangerth and Timo Heister

M. Kronbichler, IT @ Uppsala (11 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Linear algebra for flow solvers

For blocked systems use GMRES with Schur complement
preconditioners

I Navier–Stokes:

P−1 =

(
Â−1 Â−1BŜ−1

0 Ŝ−1

)
with Â−1 approximated by ILU or AMG,
Ŝ−1 = 1

ηM
−1
p + 1

∆tL
−1
p (pressure mass and Laplace

matrix)

Collaboration with Bärbel Janssen

M. Kronbichler, IT @ Uppsala (11 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

What I did to make my programs run (a bit)
faster

I Parallelization

I Trilinos linear algebra

I Improvements in ConstraintMatrix

I Matrix assembly

M. Kronbichler, IT @ Uppsala (12 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Parallelization

For large scale problems (3D), need to distribute work
and data structures (matrices, triangulations) over several
compute nodes. Introduced some of that in above
framework (not yet all of it).

I I have worked with enabling deal.II to use Trilinos
parallel linear algebra

I Enabling massive parallelism with deal.II ⇒ Timo
Heister’s talk

M. Kronbichler, IT @ Uppsala (13 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Trilinos structures

Trilinos provides framework for distributed calculations
very similar to deal.II’s own structures and PETSc

wrappers

I Matrices: TrilinosWrappers::SparseMatrix,
TrilinosWrappers::BlockSparseMatrix, distributed over
processors row-wise

I Vectors: TrilinosWrappers::Vector,
TrilinosWrappers::MPI::Vector and block versions, former
is not distributed (or full size in distributed environments), the
latter is distributed as matrices

I Preconditioners: Jacobi, SSOR, ILU, Chebyshev, AMG

M. Kronbichler, IT @ Uppsala (14 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Trilinos structures

Trilinos provides framework for distributed calculations
very similar to deal.II’s own structures and PETSc

wrappers

I Matrices: TrilinosWrappers::SparseMatrix,
TrilinosWrappers::BlockSparseMatrix, distributed over
processors row-wise

I Vectors: TrilinosWrappers::Vector,
TrilinosWrappers::MPI::Vector and block versions, former
is not distributed (or full size in distributed environments), the
latter is distributed as matrices

I Preconditioners: Jacobi, SSOR, ILU, Chebyshev, AMG

M. Kronbichler, IT @ Uppsala (14 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Trilinos AMG preconditioner

TrilinosWrappers::PreconditionAMG is a very
convenient preconditioner that works well for many PDE
operators

Properties:
I Works with Trilinos sparse

matrices and deal.II sparse
matrices (creates a copy to
a Trilinos matrix internally)

I Works well for linear and
quadratic elements in 2D
and 3D, around 20 iterations
to solve Laplace problems

I Works less well for higher
order elements

To make things more
efficient. . .

I Would need to create
patches of low-order (linear)
elements for higher-order or
hp approximations and base
preconditioner on matrices
from those elements

M. Kronbichler, IT @ Uppsala (15 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Trilinos AMG preconditioner

TrilinosWrappers::PreconditionAMG is a very
convenient preconditioner that works well for many PDE
operators

Properties:
I Works with Trilinos sparse

matrices and deal.II sparse
matrices (creates a copy to
a Trilinos matrix internally)

I Works well for linear and
quadratic elements in 2D
and 3D, around 20 iterations
to solve Laplace problems

I Works less well for higher
order elements

To make things more
efficient. . .

I Would need to create
patches of low-order (linear)
elements for higher-order or
hp approximations and base
preconditioner on matrices
from those elements

M. Kronbichler, IT @ Uppsala (15 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Writing into matrices with the
ConstraintMatrix class

For writing into matrices (and vectors), I improved
ConstraintMatrix::distribute local to global

functions.

Purpose of function:

I Resolves constraints and writes into matrix

I Works for deal.II and distributed matrices (where
usual condense functions and
apply boundary conditions do not work as neatly)

M. Kronbichler, IT @ Uppsala (16 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Writing into matrices with the
ConstraintMatrix class: Speed

I Timing for 3D problem, Q2 elements, 274k DoFs
with dealii::SparseMatrix<double>, only
boundary constraints:

SP::add(i,j,value) (one by one) 2.8 s
CM function 0.83 s, of which 0.61 s sparse matrix

read/write access (unavoidable)

I Complexity per row: n entries in matrix row *
const, (constant about 4 in 2D, 8 in 3D)

I traditional algorithm: n entries in matrix row *
log(n entries in matrix row) * const

I Much more efficient than adding elements one by
one with SP::add ⇒ always do this — empty CM to
write local matrices into global ones!

M. Kronbichler, IT @ Uppsala (17 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Writing into matrices with the
ConstraintMatrix class: Speed

I Timing for 3D problem, Q2 elements, 274k DoFs
with dealii::SparseMatrix<double>, only
boundary constraints:

SP::add(i,j,value) (one by one) 2.8 s
CM function 0.83 s, of which 0.61 s sparse matrix

read/write access (unavoidable)

I Complexity per row: n entries in matrix row *
const, (constant about 4 in 2D, 8 in 3D)

I traditional algorithm: n entries in matrix row *
log(n entries in matrix row) * const

I Much more efficient than adding elements one by
one with SP::add ⇒ always do this — empty CM to
write local matrices into global ones!

M. Kronbichler, IT @ Uppsala (17 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Writing into matrices with the
ConstraintMatrix class: Speed

I Timing for 3D problem, Q2 elements, 274k DoFs
with dealii::SparseMatrix<double>, only
boundary constraints:

SP::add(i,j,value) (one by one) 2.8 s
CM function 0.83 s, of which 0.61 s sparse matrix

read/write access (unavoidable)

I Complexity per row: n entries in matrix row *
const, (constant about 4 in 2D, 8 in 3D)

I traditional algorithm: n entries in matrix row *
log(n entries in matrix row) * const

I Much more efficient than adding elements one by
one with SP::add ⇒ always do this — empty CM to
write local matrices into global ones!

M. Kronbichler, IT @ Uppsala (17 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Writing into matrices with the
ConstraintMatrix class: Implementation

I Sorts indices, then traverses matrix row and adds
data to present elements (avoids several accesses in
case of constraints)

I Resolves constraints and collects data before writing
into sparse matrix

M. Kronbichler, IT @ Uppsala (18 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Matrix assembly with constant coefficients

Implemented function
FEValues::get cell similarity which checks for
translations of cells. If one cell is translation of the
previous one (as e.g. for Cartesian meshes):

I FEValues does not need to recompute gradients or
Jacobian transformations for simple mappings
(implemented in library)

I If assembling a constant-coefficient matrix (e.g.
Laplace matrix), do not need to recompute matrix
(user’s responsibility)

M. Kronbichler, IT @ Uppsala (19 : 20)



Flow/Transport

Problem setting
Applications

Program design
Modularity
Linear algebra

Efficiency
Parallelization
Trilinos
Constraint matrix
Matrix assembly

Summary

Summary

I Implemented framework for dealing with coupled
flow/transport problems

I Work on efficient (parallel) numerical linear algebra

I A few things that might also help others to speed up
their programs

M. Kronbichler, IT @ Uppsala (20 : 20)


	Problem setting
	Applications

	Program design
	Modularity
	Linear algebra for flow solvers

	What I did to make my programs run (a bit) faster
	Parallelization
	Trilinos
	Constraint matrix
	Matrix assembly

	Summary

