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Goals for a multilevel methods on adaptive meshes

Convergence rates
may not be significantly lower than on regular meshes without local
refinement

Optimal complexity
each step should be performed with optimal computational complexity

Matrix structures
involved must be easy to obtain in a finite element code and may not
severely increase memory requirements
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Goals for a multilevel methods ctd.

Smoothing
should only happen on subgrids without hanging nodes to simplify
cell-based smoothers

Continuity
the scheme should be able to use the continuity conditions across faces
for any finite element
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Implementation of Multigrid in deal.II

WARNING
Multigrid on locally refined meshes only works with discontinuous
finite elements right now.
It is not clear, whether the paradigm of local smoothing we use is
applicable to continuous elements with hanging nodes.

In fact, most people you meet on conferences seem to deny this.

[taken from the documentation of deal.II]
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Geometric Multigrid in deal.II

What was available in deal.II?
MG for discontinuous finite elements (global and local refinement)

MG for continuous finite elements (only for global refinement)

MG for continuous finite elements on locally refined grids
Idea: Adjust the existing MG for discontinuous elements to continuous
elements.

Problem
How do we have to treat the hanging nodes correctly?
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Solution of model problem

Poisson Problem
Find u ∈ V s.t.

a(u, v) = (∇u,∇v) = (f , v) ∀v ∈ V .

Here V denotes the subspace of H1(Ω) with suitable boundary
conditions.

We obtain a linear system Au = f .

global refinement local refinement
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Problems on different levels

Problem on mesh T`

A`u` = f`.

to be solved by a Krylov-space solver. To understand this, it is sufficient
to consider the

Richardson iteration

uk+1
` = uk

` + ωr k
`

r k being the residual of the current iteration step k .

Preconditioned iteration

uk+1
` = uk

` + ωP−1
` r k

` .
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Multigrid as a preconditioner

Algorithm (V-Cycle)

Let P0 = A0. Set x (0) = 0 and compute P−1
` d` by the following steps:

1 (Pre-smoothing) Compute x (m`) iteratively by

x (i) = x (i−1) + S(i)
` (d` − A`x (i−1)), i = 1, . . . ,m`.

2 (Coarse grid correction) Let

y (0) = x (m`) + RT
`−1P

−1
`−1R`−1(d` − A`x (m`)).

3 (Post-smoothing) Compute y (m`) iteratively by

y (i) = y (i−1) + S(m`+i)
` (d` − A`y (i−1)), i = 1, . . . ,m`.

4 Set P−1
` d` = y (m`).
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Solution of the Poisson Problem
Discontinuous Case

Subspaces on locally refined
meshes for DG case

Splitting with discontinuous
elements

(
ASS
` ASL

`

ALS
` ALL

`

)(
xS
`

xL
`

)
=

(
f S
`

f L
`

)

V` = V S
` ⊕ V L

`

[G. Kanschat: Multi-level methods for discontinuous Galerkin FEM on locally
refined meshes, Comput. & Struct., vol. 82, pp. 2437-2445, 2004]
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Solution of the Poisson Problem
Continuous Case

Subspaces on locally refined meshes for continuous case

Splitting with continuous elementsASS
` ASE

`

AES
` AEE

` ALL
`

ALE
` ALL

`


xS
`

xE
`

xL
`

 =

f S
`

f E
`

f L
`

 , with V` = V S
` ⊕ V E

` ⊕ V L
`
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Local Smoothing

A hierarchy of three meshes with local refinement

Active cells are colored.

We restrict the smoothing to the subspace V S
` .

Prolongation and restriction

restrict without creating any contributions in V E
`

prolongate and take the coupling in V E
` into account
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Locally refined Grids in 2D

The locally refined grids have to fulfill certain criteria:

Cells sharing a common face may only differ by one refinement level.

Levels of all active cells sharing one vertex differ by a maximum of
one.

Refinement of the positive quadrant and a circle
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Convergence for linear elements

Iteration steps and convergence rates with Q1 elements in 2D

global quadrant circle

L n r n r n r

2 1 16.00 1 15.94 4 2.92
3 4 2.92 6 2.13 6 1.84
4 6 2.03 7 1.57 7 1.72
5 6 1.81 7 1.54 7 1.66
6 6 1.71 7 1.55 8 1.43
7 6 1.67 7 1.57 7 1.58
8 7 1.65 7 1.58 7 1.49
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Locally refined Grids in 3D

Refinement of the first octant and a ball
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Convergence in 3D

Iteration steps and convergence rates in 3D

Q1-elements Q2-elements

global octant ball global octant ball

L n r n r n r n r n r n r

2 1 16. 1 16. 4 3.2 4 2.7 5 2.2 6 1.9
3 4 3.2 6 2.1 6 1.8 6 1.9 7 1.6 7 1.6
4 5 2.0 7 1.5 6 1.8 7 1.6 7 1.5 7 1.6
5 6 1.8 7 1.5 6 1.7 7 1.5 7 1.5 7 1.5
6 6 1.7 7 1.5 8 1.4 7 1.4 7 1.5 8 1.3
7 7 1.7 7 1.5 7 1.4 8 1.4 7 1.5 7 1.5
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Conclusions and Outlook

Conclusions
Multigrid for adaptive meshes was introduced

Finite elements are continuous

Hanging nodes were taken into account

Optimal convergence due to local smoothing

Outlook
Other smoothers for higher order elements

Multigrid for Raviart-Thomas elements
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Thank you very much for your attention.
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