Multilevel Methods with Local Smoothing

Bärbel Janssen, joint work with Guido Kanschat

Institute of Applied Mathematics University of Heidelberg

August 24, 2010

Convergence rates

may not be significantly lower than on regular meshes without local refinement

Optimal complexity

each step should be performed with optimal computational complexity

Matrix structures

involved must be easy to obtain in a finite element code and may not severely increase memory requirements

Smoothing

should only happen on subgrids without hanging nodes to simplify cell-based smoothers

Continuity

the scheme should be able to use the continuity conditions across faces for any finite element

WARNING

- Multigrid on locally refined meshes only works with **discontinuous finite elements** right now.
- It is not clear, whether the paradigm of local smoothing we use is applicable to continuous elements with hanging nodes.
- In fact, most people you meet on conferences seem to deny this.

[taken from the documentation of deal.II]

WARNING

- Multigrid on locally refined meshes only works with **discontinuous finite elements** right now.
- It is not clear, whether the paradigm of local smoothing we use is applicable to continuous elements with hanging nodes.
- In fact, most people you meet on conferences seem to deny this.

[taken from the documentation of deal.II]

WARNING

- Multigrid on locally refined meshes only works with **discontinuous finite elements** right now.
- It is not clear, whether the paradigm of local smoothing we use is applicable to continuous elements with hanging nodes.
- In fact, most people you meet on conferences seem to deny this.

[taken from the documentation of deal.II]

What was available in deal.II?

- MG for discontinuous finite elements (global and local refinement)
- MG for continuous finite elements (only for global refinement)

MG for continuous finite elements on locally refined grids

Idea: Adjust the existing MG for discontinuous elements to continuous elements.

Problem

How do we have to treat the hanging nodes correctly?

Poisson Problem

Find $u \in V$ s.t.

$$a(u, v) = (\nabla u, \nabla v) = (f, v) \quad \forall v \in V.$$

Here V denotes the subspace of $H^1(\Omega)$ with suitable boundary conditions.

We obtain a linear system Au = f.

Problem on mesh $\mathbb{T}_{\boldsymbol{\ell}}$

$$A_{\ell}u_{\ell}=f_{\ell}.$$

to be solved by a Krylov-space solver. To understand this, it is sufficient to consider the

Richardson iteration

$$u_{\ell}^{k+1} = u_{\ell}^{k} + \omega r_{\ell}^{k}$$

 r^k being the residual of the current iteration step k.

Preconditioned iteration

$$u_{\ell}^{k+1} = u_{\ell}^k + \omega P_{\ell}^{-1} r_{\ell}^k.$$

Let $P_0 = A_0$. Set $x^{(0)} = 0$ and compute $P_{\ell}^{-1}d_{\ell}$ by the following steps: (Pre-smoothing) Compute $x^{(m_{\ell})}$ iteratively by

$$x^{(i)} = x^{(i-1)} + S_{\ell}^{(i)}(d_{\ell} - A_{\ell}x^{(i-1)}), \quad i = 1, \dots, m_{\ell}.$$

(Coarse grid correction) Let

$$y^{(0)} = x^{(m_{\ell})} + R_{\ell-1}^{T} P_{\ell-1}^{-1} R_{\ell-1} (d_{\ell} - A_{\ell} x^{(m_{\ell})}).$$

(Post-smoothing) Compute $y^{(m_{\ell})}$ iteratively by

$$y^{(i)} = y^{(i-1)} + S_{\ell}^{(m_{\ell}+i)}(d_{\ell} - A_{\ell}y^{(i-1)}), \quad i = 1, \dots, m_{\ell}$$

Splitting with discontinuous elements

$$\begin{pmatrix} A_{\ell}^{SS} & A_{\ell}^{SL} \\ A_{\ell}^{LS} & A_{\ell}^{LL} \end{pmatrix} \begin{pmatrix} x_{\ell}^{S} \\ x_{\ell}^{L} \end{pmatrix} = \begin{pmatrix} f_{\ell}^{S} \\ f_{\ell}^{L} \end{pmatrix}$$
$$V_{\ell} = V_{\ell}^{S} \oplus V_{\ell}^{L}$$

[G. Kanschat: Multi-level methods for discontinuous Galerkin FEM on locally refined meshes, Comput. & Struct., vol. 82, pp. 2437-2445, 2004]

Bärbel Janssen

Institute of Applied Mathematics, Heidelberg

Subspaces on locally refined meshes for continuous case

Splitting with continuous elements

$$\begin{pmatrix} A_{\ell}^{SS} & A_{\ell}^{SE} \\ A_{\ell}^{ES} & A_{\ell}^{EE} & A_{\ell}^{LL} \\ & A_{\ell}^{LE} & A_{\ell}^{LL} \end{pmatrix} \begin{pmatrix} x_{\ell}^{S} \\ x_{\ell}^{E} \\ x_{\ell}^{L} \end{pmatrix} = \begin{pmatrix} f_{\ell}^{S} \\ f_{\ell}^{E} \\ f_{\ell}^{L} \end{pmatrix}, \text{ with } V_{\ell} = V_{\ell}^{S} \oplus V_{\ell}^{E} \oplus V_{\ell}$$

Let $P_0 = A_0$. Set $x^{(0)} = 0$ and compute $P_{\ell}^{-1}d_{\ell}$ by the following steps: (Pre-smoothing) Compute $x^{(m_{\ell})}$ iteratively by

$$x^{(i)} = x^{(i-1)} + S_{\ell}^{(i)}(d_{\ell} - A_{\ell}x^{(i-1)}), \quad i = 1, \dots, m_{\ell}.$$

(Coarse grid correction) Let

$$y^{(0)} = x^{(m_{\ell})} + R_{\ell-1}^{T} P_{\ell-1}^{-1} R_{\ell-1} (d_{\ell} - A_{\ell} x^{(m_{\ell})}).$$

(Post-smoothing) Compute $y^{(m_{\ell})}$ iteratively by

$$y^{(i)} = y^{(i-1)} + S_{\ell}^{(m_{\ell}+i)}(d_{\ell} - A_{\ell}y^{(i-1)}), \quad i = 1, \dots, m_{\ell}$$

Let P₀ = A₀. Set x⁽⁰⁾ = 0 and compute P_ℓ⁻¹d_ℓ by the following steps:
(Pre-smoothing) On the subspace V_ℓ^S only, compute x^(m_ℓ) iteratively by

$$x^{(i)} = x^{(i-1)} + \tilde{S}_{\ell}^{(i)}(d_{\ell} - A_{\ell}x^{(i-1)}), \quad i = 1, \dots, m_{\ell}.$$

(Coarse grid correction) Let

$$y^{(0)} = x^{(m_{\ell})} + R_{\ell-1}^{T} P_{\ell-1}^{-1} R_{\ell-1} (d_{\ell} - A_{\ell} x^{(m_{\ell})}).$$

(Post-smoothing) Compute $y^{(m_{\ell})}$ iteratively by

$$y^{(i)} = y^{(i-1)} + S_{\ell}^{(m_{\ell}+i)}(d_{\ell} - A_{\ell}y^{(i-1)}), \quad i = 1, \dots, m_{\ell}$$

Let $P_0 = A_0$. Set $x^{(0)} = 0$ and compute $P_{\ell}^{-1}d_{\ell}$ by the following steps: (Pre-smoothing) On the subspace V_{ℓ}^{S} only, compute $x^{(m_{\ell})}$ iteratively

by

$$x^{(i)} = x^{(i-1)} + \tilde{S}_{\ell}^{(i)}(d_{\ell} - A_{\ell}x^{(i-1)}), \quad i = 1, \dots, m_{\ell}.$$

(Coarse grid correction) Let

 $y^{(0)} = x^{(m_{\ell})} + R_{\ell-1}^{T} P_{\ell-1}^{-1} (R_{\ell-1}^{S} (d_{\ell}^{S} - A_{\ell}^{SS} x_{S}^{(m_{\ell})}) + d_{\ell}^{E} - A_{\ell}^{ES} x_{S}^{(m_{\ell})}).$

(Post-smoothing) Compute $y^{(m_{\ell})}$ iteratively by

$$y^{(i)} = y^{(i-1)} + S_{\ell}^{(m_{\ell}+i)}(d_{\ell} - A_{\ell}y^{(i-1)}), \quad i = 1, \dots, m_{\ell}$$

Let $P_0 = A_0$. Set $x^{(0)} = 0$ and compute $P_{\ell}^{-1}d_{\ell}$ by the following steps:

(Pre-smoothing) On the subspace V_{ℓ}^{S} only, compute $x^{(m_{\ell})}$ iteratively by

$$x^{(i)} = x^{(i-1)} + \tilde{S}_{\ell}^{(i)}(d_{\ell} - A_{\ell}x^{(i-1)}), \quad i = 1, \dots, m_{\ell}.$$

(Coarse grid correction) Let

 $y^{(0)} = x^{(m_{\ell})} + R_{\ell-1}^{T} P_{\ell-1}^{-1} (R_{\ell-1}^{S} (d_{\ell}^{S} - A_{\ell}^{SS} x_{S}^{(m_{\ell})}) + d_{\ell}^{E} - A_{\ell}^{ES} x_{S}^{(m_{\ell})}).$

(Post-smoothing) Compute $y^{(m_{\ell})}$ iteratively by

$$y^{(i)} = y^{(i-1)} + \tilde{S}_{\ell}^{(m_{\ell}+i)}(d_{\ell} - A_{\ell}y^{(i-1)}), \quad i = 1, \dots, m_{\ell}$$

Local Smoothing

A hierarchy of three meshes with local refinement

Active cells are colored.

We restrict the smoothing to the subspace V_{ℓ}^{S} .

Prolongation and restriction

- restrict without creating any contributions in V_{ℓ}^E
- prolongate and take the coupling in V^E_ℓ into account

The locally refined grids have to fulfill certain criteria:

- Cells sharing a common face may only differ by one refinement level.
- Levels of all active cells sharing one vertex differ by a maximum of one.

Iteration steps and convergence rates with Q_1 elements in 2D

	ç	global	qu	adrant	circle		
L	п	r	п	r	п	r	
2	1	16.00	1	15.94	4	2.92	
3	4	2.92	6	2.13	6	1.84	
4	6	2.03	7	1.57	7	1.72	
5	6	1.81	7	1.54	7	1.66	
6	6	1.71	7	1.55	8	1.43	
7	6	1.67	7	1.57	7	1.58	
8	7	1.65	7	1.58	7	1.49	

Refinement of the first octant and a ball

Iteration steps and convergence rates in 3D													
		Q_1 -elements						Q_2 -elements					
	global		octant ball		global		octant		ball				
L	n	r	n	r	n	r	n	r	n	r	n	r	
2	1	16.	1	16.	4	3.2	4	2.7	5	2.2	6	1.9	
3	4	3.2	6	2.1	6	1.8	6	1.9	7	1.6	7	1.6	
4	5	2.0	7	1.5	6	1.8	7	1.6	7	1.5	7	1.6	
5	6	1.8	7	1.5	6	1.7	7	1.5	7	1.5	7	1.5	
6	6	1.7	7	1.5	8	1.4	7	1.4	7	1.5	8	1.3	
7	7	1.7	7	1.5	7	1.4	8	1.4	7	1.5	7	1.5	

Conclusions

- Multigrid for adaptive meshes was introduced
- Finite elements are continuous
- Hanging nodes were taken into account
- Optimal convergence due to local smoothing

Outlook

- Other smoothers for higher order elements
- Multigrid for Raviart-Thomas elements

Thank you very much for your attention.