
w
w

w
.d

ea
lii

.o
rg

Using multicore machines

with deal.II

Wolfgang Bangerth
Department of Mathematics

Texas A&M University

w
w

w
.d

ea
lii

.o
rg My laptop has 4 (hyperthreaded) cores.

Your workstation probably has many more.

If it hasn't, it definitely will in a couple years

Let's try to use them all.

Background

w
w

w
.d

ea
lii

.o
rg

Finite element codes almost always have several things to
do at once:

● Assemble the linear system on one cell while doing the same
on a different cell

● Do the matrix-vector product with one matrix row while doing
the same on a different row

● Generate graphical output while estimating the error

● Estimate the error on one cell while also estimating it on a
different cell.

How can we do these kinds of things in parallel?

Background

w
w

w
.d

ea
lii

.o
rg

There are two basic approaches:

● Use threads with explicit creation/destruction

● Use tasks and a scheduler

Overview

w
w

w
.d

ea
lii

.o
rg

Definition:

● A program can be split into several different threads

● Threads run in parallel or, if there are too many, are
scheduled onto available processors

● All threads that belong to a single program have access to
the same memory locations

● Threads need to be explicitly created and we can wait for
their demise; for example using

- Threads::new_thread
- Threads::Thread::join

Approach 1: Threads

w
w

w
.d

ea
lii

.o
rg

Example:

void MyApp::postprocess ()
{

 Threads::Thread<void>
thread_1 = Threads::new_thread (&MyApp::write_results,

 *this),

thread_2 = Threads::new_thread (&MyApp::estimate_error,
*this);

 Thread_1.join ();
 thread_2.join ();
}

Approach 1: Threads

postprocess

write_results

estimate_error

ne
w

_t
hr

ea
d

ne
w

_t
hr

ea
d

jo
in

jo
in

w
w

w
.d

ea
lii

.o
rg

Example (slightly simpler):

void MyApp::postprocess ()
{

 Threads::ThreadGroup<void> tg;
 tg += Threads::new_thread (&MyApp::write_results,

 *this),

 tg += Threads::new_thread (&MyApp::estimate_error,
*this);

 tg.join_all ();
}

Approach 1: Threads

postprocess

write_results

estimate_error

ne
w

_t
hr

ea
d

ne
w

_t
hr

ea
d

jo
in

_a
ll

w
w

w
.d

ea
lii

.o
rg

Problem 1 with threads:

● Thread creation is expensive: you can do this when calling
large functions, but you don't want to do this for every cell

Unfortunately, much of the parallelism in finite element programs
comes from many small tasks (integration over cells, matrix-
vector multiplication with individual matrix rows).

Approach 1: Threads

w
w

w
.d

ea
lii

.o
rg

Problem 2 with threads:

● Breaking many tasks into a small number of “chunks” and
putting them onto individual threads does not usually load
balance very well

This is because not every integration over a cell costs equally
much time.

Approach 1: Threads

estimate_error

estimate_error_chunk (begin_1, end_1)

estimate_error_chunk (begin_2, end_2)

ne
w

_t
hr

ea
d

ne
w

_t
hr

ea
d

jo
in

_a
ll

estimate_error_chunk (begin_3, end_3)

estimate_error_chunk (begin_4, end_4)

ne
w

_t
hr

ea
d

ne
w

_t
hr

ea
d

w
w

w
.d

ea
lii

.o
rg

Problem 3 with threads:

● It doesn't usually take into account how many processors you
really have

Example: Assume you have only 1 processor, then starting
threads altogether is inefficient.

Approach 1: Threads

postprocess

write_results

estimate_error

ne
w

_t
hr

ea
d

ne
w

_t
hr

ea
d

jo
in

_a
ll

w
w

w
.d

ea
lii

.o
rg

Problem 3 with threads:

● It doesn't usually take into account how many processors you
really have

Example (variant): Assume you have only 2 processors, then
starting further threads in estimate_error is inefficient.

The basic problem is that estimate_error is unaware of the
number of threads running overall.

Approach 1: Threads

postprocess

write_results

estimate_error

ne
w

_t
hr

ea
d

ne
w

_t
hr

ea
d

jo
in

_a
ll

estimate_error

w
w

w
.d

ea
lii

.o
rg

Definition:

● A task is something that needs to be done, now or later

● Tasks are much finer grained than what you would typically
create a thread for

● A scheduler creates as many threads as there are cores on
your machine and schedules tasks to threads

● Tasks are described to the scheduler using
- Threads::new_task

You can wait for a task to be finished using
- Threads::Task::join

Approach 2: Tasks

w
w

w
.d

ea
lii

.o
rg

Problem 3 with threads (revisited): Assume you have only 1
processor, then starting threads altogether is inefficient.

Using new_task instead of new_thread would yield the following
execution schedule:

Approach 2: Tasks

postprocess

write_results

estimate_error

ne
w

_t
hr

ea
d

ne
w

_t
hr

ea
d

jo
in

_a
ll

postprocess postprocesswrite_results estimate_error

ne
w

_t
as

k

ne
w

_t
as

k

jo
in

_a
ll

w
w

w
.d

ea
lii

.o
rg

Problem 3 (variant) with threads revisited: Assume you have
only 2 processors, then starting further threads in estimate_error
is inefficient.

With tasks this would execute as follows:

Approach 2: Tasks

postprocess

write_results

estimate_error

ne
w

_t
hr

ea
d

ne
w

_t
hr

ea
d

jo
in

_a
ll

estimate_error

postprocess

write_results

estimate_error

ne
w

_t
as

k

ne
w

_t
as

k

jo
in

_a
ll

estimate_error

w
w

w
.d

ea
lii

.o
rg

Tasks with simple loops

Example: Consider the following vector addition loop

void Vector::operator += (const Vector &v)
{

 for (unsigned int i=0; i<size(); ++i)
elements[i] += v.elements[i];

}

This is an embarrassingly parallel problem, and we could create
a task for each vector element.

But that would of course be inefficient: Scheduling these tasks
would be much more expensive than executing them.

w
w

w
.d

ea
lii

.o
rg

Tasks with simple loops

Example: Consider the following vector addition loop

void Vector::operator += (const Vector &v)
{

 for (unsigned int i=0; i<size(); ++i)
elements[i] += v.elements[i];

}

Instead, use something like this:

void add_to (double *result, double *rhs)
{

 *result += *rhs;
}

void Vector::operator += (const Vector &v)
{

 parallel::transform (this->begin(), this->end(),
v.begin(),
&add_to);

}

w
w

w
.d

ea
lii

.o
rg

Tasks with simple loops

How parallel::transform works:

● Take one half of the entire range (begin, end) and divide it by
the number of processors available

● Make one task out of each of these blocks

● Take one half of the rest and divide it into tasks

● Take one half of the rest and divide it into tasks, etc

● Until blocks become smaller than a certain threshold

This is divide-and-conquer. It guarantees reasonably good
processor utilization.

w
w

w
.d

ea
lii

.o
rg

Tasks with synchronization: WorkStream

Sometimes tasks (and threads) step on each others' feet:

void assemble_on_cell (const cell_iterator &cell)
{
 FullMatrix cell_matrix;

 … assemble … assemble … assemble …

 for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
 for (unsigned int j=0; j<fe.dofs_per_cell; ++j)

system_matrix(global_i,global_j) += cell_matrix(i,j);
}

void assemble ()
{
 parallel::for_all (dof_handler.begin_active(),

 dof_handler.end(),
 &assemble_on_cell);

}

Note the load and store into the system matrix. This can't work
with multiple threads.

w
w

w
.d

ea
lii

.o
rg

Tasks with synchronization: WorkStream

We would need to write this as follows:

void assemble_on_cell (const cell_iterator &cell)
{
 FullMatrix cell_matrix;

 … assemble … assemble … assemble …

 static Mutex mutex;

 mutex.acquire ();
 for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
 for (unsigned int j=0; j<fe.dofs_per_cell; ++j)

system_matrix(global_i,global_j) += cell_matrix(i,j);
 mutex.release ();
}

void assemble ()
{
 parallel::for_all (dof_handler.begin_active(),

 dof_handler.end(),
 &assemble_on_cell);

}

w
w

w
.d

ea
lii

.o
rg

Tasks with synchronization: WorkStream

Problems with this approach:

● Explicit synchronization with mutices is expensive

● It does not scale well to when we will all have 256 cores

● Even if these were non-issues, it still has a problem: The
order in which we add to the matrix is undetermined, but in
floating point arithmetic

a+b+c
is not the same as

a+c+b
That means that we won't get the same matrix twice in a row.

w
w

w
.d

ea
lii

.o
rg

Tasks with synchronization: WorkStream

Solution: We have to separate

● the embarrassingly parallel and independent computation of
local contributions, and

● the reduction operation of adding to the global matrix

into two parts. Furthermore:

● The reduction operation should only run on a single thread to
avoid explicit synchronization

● The reduction operation should always run in exactly the
same order

● The local computation can run in any order and in parallel

This is exactly what the WorkStream class does.

w
w

w
.d

ea
lii

.o
rg

Tasks with synchronization: WorkStream

Conceptually, code will then look as follows:

void assemble_on_cell (const cell_iterator &cell,
CopyData ©_data)

{
 … assemble … fill copy_data.cell_matrix … assemble …

}

void copy_local_to_global (const CopyData ©_data)
{
 for (unsigned int i=0; i<fe.dofs_per_cell; ++i)
 for (unsigned int j=0; j<fe.dofs_per_cell; ++j)

system_matrix(global_i,global_j) += cell_matrix(i,j);
}

void assemble ()
{
 WorkStream::run (dof_handler.begin_active(),

 dof_handler.end(),
&assemble_on_cell,
©_local_to_global);

}

w
w

w
.d

ea
lii

.o
rg

Tasks with synchronization: WorkStream

In practice:

● WorkStream does not work on individual cells but gives each
processor several at a time (e.g. 8)

● Guarantees that the result is the same every time,
independently on the order in which cells are assembled

● Is currently used in DataOut, KellyErrorEstimator,
MatrixCreator

● step-32, step-35, step-37

● Should at one point be used in MeshWorker

w
w

w
.d

ea
lii

.o
rg Make thinking in parallel your default!

Help parallelize more parts of deal.II!

(And read the documentation in the
 “Threads/Tasks” module.)

For now:

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

