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 Fuel cells are governed by several coupled
physical phenomena

* Fuel cell performance depends on a large number
of coupled design parameters

* Numerical optimization allows changing of all
design parameters simultaneously to obtain an
optimal design
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Previous work
T Song et al., 2004

— One-dimensional catalyst layer model
— @Gradient-based method with numerical sensitivities

e Gurujicic et al., 2004

— Two- and three-dimensional fuel cell with a zero-
thickness catalyst layer model

— @Gradient-based method with numerical sensitivities

« Mawardi et al., 2005

— One-dimensional fuel cell model

— Nelder-Mead simplex method combined with simulated
annealing optimization
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Previous work
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* Limited to a low accuracy fuel cell model
due to the computational expense of
solving high-fidelity models

* This limitation can be reduced by using
— parallel machine architecture
— gradient-based methods
— efficient method to compute the gradients
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* Development of an optimization framework
for high-fidelity fuel cell models by using

— accurate two-dimensional fuel cell models solved
using deal.11

— gradient-based optimization algorithms coupled
with analytical sensitivities obtained using deal.i
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Methodology

 In order to develop a numerical fuel cell
optimization framework it is necessary to develop

— Accurate fuel cell model

— A program using deal.11 to solve the fuel cell model

— Appropriate objective function and constraints

— Objective function and constraints analytical
sensitivities

— Optimization algorithm
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Fuel cell model
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* Develop the set of partial differential
equations (PDE) that governs the fuel cell

R(u,p) =0

* Solve the governing equations using the
deal.i1 finite element library

* Adaptive mesh refinement

 Parallel solution of the equations
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Design problem
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* Perform a parametric study and select

v objective function
* maximize current density
* maximize power

v’ constraints/requirements
* limit maximum cell temperature
* limit maximum amount of platinum

v design variables
» geometric variables
e composition variables

 operating variables




Analytical sensitivities
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* Gradients of objective function and
constraints, f, are given by

df (u,p) _ Of(u,p) Ou  Of(u,p)

dp ou Op Op

« Differentiate the fuel cell governing equations
with respect to the design parameters

OR(u,p) Ou  OR(u,p)

ou op Op
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Optimization framework
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Catalyst layer optimization
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Problem formulation
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* One dimensional catalyst layer composition
optimization

* Optimization problem is to

minimize overpotential(n(i = i9))
w.r.t. EN, M Ppt
subject to: 0< ey <1

0<es <1

0<eny <1
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1D catalyst layer model
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_di gef | €O, aF
f(copsm) = dr 0 ( ref) EXp (ﬁ”)




Boundary conditions
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Finite element solution
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* Use Newton method to solve the system.
The linearized equations are

dR(u, )\)5
u

= —R(u, \
™ (u, A)

* The linerized problem 1s solved using
— the Galerkin method
— first order elements
— Global refinement
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Optimization process
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* The gradient of the overpotential and
constraints 1s obtained by analytical
differentiation of the governing equations

* The Modified Method of Feasible
Directions 1s used to solve the optimization
problem
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Problem initial parameters
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 Current density:
— 1, = 0.5A/cm?

* Initial Design:
— Objective:
e 1=-0.675514V

— Design variables:
e mp, = 3.332x10* g cm™
*ey=0.3
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Absolute value of the overpotential [V]
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Post-optimal analysis
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* Solution sensitivity to changes in design
variables
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Problem formulation
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* Two dimensional electrode composition
optimization

e Optimization problem is to

maximize i(dV = Vp)

w.r.t. egDL, G%AT,mpt, %Pt
subject to: 0 <ey <1
0<eg<1

- 0<eny<1 m



Two-dimensional cathode
electrode problem

V(D] Vzo,) = V-7
V- (6 Vo) =V -7
V- (0 Veg) =-V .7

where

/caz \ k ol
V - ;z Z-?(“)ef T@sz exp —(¢m — gbs)
\ COQ / <RT )
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& Boundary conditions
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Finite element solution
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* Use Newton method to solve the system of
equations. The linearized equations are

dR(u, \) 5
du
* The linerized problem 1s solved using
— the Galerkin method

— first order elements

u= —R(u,\)

— adaptive grid refinement
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Current density
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* The current density 1s obtained 1n the post-analysis
using either




Adaptive grid refinement
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* Kelly error estimator for c,, and ¢g
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Catalyst layer solution
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Optimization solution
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 Initial Design:
— Objective:
¢ 1=0.491367 A/cm? fordV=0.25V
— Design variables:
* GDL :&,=0.5
e CL: mp, =3.332x10* g cm™
* CL:ey=023
* CL: %Pt=10.2

— Grid with a maximum of 500 dof =>
preliminary results!
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Optimization solution
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* Final Design:

— Objective:
« 1=1.01408 A/cm? for dV=0.25V

— Design variables:
* GDL : &, =0.620494 => ~25% increase
* CL: mp, = 10.3464x10* g cm2=> ~200% increase
* CL: gy =0.424708 => ~30% increase
* CL: %Pt =0.463985 => ~60% increase

The current density has doubled!!!
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Summary
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* Deal.11 was successfully used

— to solve one and two-dimensional fuel cell
models involving highly nonlinear source
terms

— to obtain the analytical sensitivities of the
unknowns of the analysis problem and the
objective function of the optimization problem

— to perform fuel cell optimization in
conjunction with a commercial optimization
software
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