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1. Coupled Problem

Abbildung 1: Scheme of the model



1. Fluid Structure Problems

Navier-Stokes egs. for incompressible transient flows
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2. Weighted Residual Methods

To solve
Lu = f in (6)
Ru = g on T (7)
Method of weighted residual:
seek u©w eV s.t. /Q([,u — flpdQ=0 Ve W (8)

The choice of ¢ determines the numerical properties of the method:
e Galerkin: p €V
e Finite Volume : ¢ = xq,

e Least Squares: o = Lv fir peV



2. Problems of the Galerkin FEM

e Difficulties in the context of saddle point problems (Stokes Egs.)
e First order differential operators require some stabilisation

e Resulting systems of equations often nonsymmetric

Intensive research resolved/circumvented most of these
problems!



2. Basics of the LSFEM

The least squares FEM minimises the following functional:

J (u) Z%(Hﬁu—f\\i+ | Ru — gll}) (9)

Higher order differential operators cause problems:
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Best suited for first order systems!



2. Advantages of the LSFEM

Properties of the LSFEM:

e Very robust (no explicit stabilisation of first order terms
necessary)

e Resulting systems of equations always symmetric positive
definite

e Mathematical theory of the Galerkin FEM applicable in many
parts

e In some cases very efficient solution procedures exist (Multigrid
with O(n))



3. LSFEM for the Navier-Stokes Eqgs.

By introducing the vorticity w, the Navier-Stokes eqs. become:
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The corresponding coercive LSFEM functional is (¢ > 0):
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3. vo-Formulation for Elastodynamics, |

Starke et.al. proposed the following first order system for linear elasticity:

C Y26 —CY%(u) = 0 in Q (15)
V.o = 0 in Q (16)

Reformulating the constitutive law in terms of the strain- and stressrates yields:
C~ Y26 —CY2%e() =0 in Q. (17)
which leads to the following formulation for elastodynamics:
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E—V-U = 0 in Q (19)



3. vo-Formulation for Elastodynamics, ||

Least squares functional:
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The resulting bilinear is only coercive in H(div) x H'. Thus finite
dimensional subspaces of H(div) have to be used for the
approximation of the stress field. Currently RT spaces are used.



3. LSFEM/LSFEM Coupling

Least squares functional for the fully coupled problem:
%Ot:jf+js+g7if (21)

with jif — Oélcjco =+ Oé%%r

Compatibility condition:
1 2
jco — 5””]" o vSHl/Q(F,L-f)' (22)

Equivalence of the normal tractions:
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4. Solution Procedure

Evaluation of the functional:

o H'-norm is replaced by a weighted Ly-norm

Elementpairs: e @ Velocity
o Q2-Q1 X Pressure
® 9 O
o Q3-Q2 o
e Q4-Q3 Q2-Q1 Element-Pair

Numerical Solution

e Full Newton iteration

e Direct solver (UMFPack)



4. Implementation with deal.ll framework

e To keep the advantage of strict geometric information, a single
Triangulation is used for the complete domain.

e Two DoFHandlers are used for the fluid and structural part

e Flag material_id is used to differentiate fluid and structure
cells

e Due to the number of available LSFEM formulations, the solvers
were implemented to be “pluggable” modules.

e Interface implemented as interior boundary



4. Structure of FSI code

GenPDE GenPDE 1.n

MultiPhysics

StokesUPW‘ ‘ NastUPW ‘ @ 1.n

GenCoup




4. Modifications of deal.ll code

e No interior boundaries are allowed: removed some assertions

e Several methods work on all cells: Adapted to be selective

Standard:

template <int dim>
void DoFHandler<dim>: :distribute_dofs (const FiniteElement<dim> &ff,
const unsigned int offset)

Modified:

template <int dim>

void DoFHandler<dim>::distribute_dofs (const FiniteElement<dim> &ff,
const unsigned int offset,
const unsigned char material)



4. Handling of the mesh deformation

e ALE-Formulation for the fluid domain.
e [he fluid domain is deformed like an elastic structure.
e MappingQ1Eulerian is used to handle the deformation.

e Mesh deformation is not integrated into NL iterations



5. Example

Fixed

” Body

Inflow Elastic Structulre Outflow

Fluid:py = 1.18 - 107%, uy = 1.82- 10"
Structure:ps = 0.1, E = 2.5 - 10°%, s = 0.35



5. Results, |

Spectrum of Vertical Tip Displacement, Q4 Structure §pectrum of Vertical Tip Displacement, Q4-Q3 Fluid, LSFEM/LSFEM
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5. Results, |l

Abbildung 4: Pressure field t = 0.5



5. Results, Il

Abbildung 5: Pressure field t = 10.12



5. Results, IV

Abbildung 6: Pressure field ¢

10.28



