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Hierarchies

♦ Grids: T0 ⊏ T1 · · · ⊏ TL

♦ Finite element spaces

V0 ⊂ V1 ⊂ · · · ⊂ VL

of piecewise polynomial functions on Tℓ.
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Components of Multigrid

♦ Smoothers on each level
♦ Jacobi
♦ Gauß-Seidel

♦ Transfer between levels
♦ Injection
♦ L2-projection

♦ Solver on the coarsest level
♦ small matrices
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Complexity

♦ Multigrid is the only preconditioner for elliptic problems
with optimal complexity

♦ holds on uniformly refined meshes
♦ Effort for level L:

nL +
nL−1

4
+

nL−2

16
+ · · · ≤

4

3
nL + O(1)

♦ Aim: maintain optimal complexity on locally refined
meshes

♦ Mesh sizes do not grow geometrically
♦ Cure: local smoothing
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What is local smoothing?

♦ Restrict the smoother to the refined part of a level

♦ Tasks:
❶ Identify a “refined” subspace of the finite element

space
❷ Define a smoothing operator on this space
❸ Maintain consistency with the whole space

deal.II User Workshop 2006, Heidelberg – p.5



(C) Guido Kanschat

Continuous finite elements

♦ Bilinear forms have support on grid cells

a(u, v) =
∑

T

aT (u, v)

♦ Finite element functions overlap several cells

☛ Degrees of freedom on faces/vertices
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Discontinuous Galerkin

♦ Finite element basis with support inside cells

☛ No topological coupling between cells

V =
⊕

VT

♦ Bilinear forms have support on cells and faces

a(u, v) =
∑

T

aT (u, v) +
∑

F

aF (u, v)
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Splitting into subspaces

♦ Local smoothing: find VL = V S

L
⊕ V L

L

V S

L
+ V L

L
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Splitting into subspaces

♦ Local smoothing: find VL = V S

L
⊕ V L

L

V S

L
+ V L

L
+ V I

L

☛ Continuous elements require smoothing on V S

L
+ V I

L
.
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Splitting of the Matrix

Vℓ = V S

ℓ
⊕ V L

ℓ
,

where V S

ℓ
and V L

ℓ
have support in TS

ℓ
and TL

ℓ
, resp.

(

AS

ℓ
ASL

ℓ

ALS

ℓ
AL

ℓ

)(

uS

ℓ

uL

ℓ

)

=

(

bS

ℓ

bL

ℓ

)

Matrices ASL

ℓ
and ALS

ℓ
correspond to refinement edge
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Local smoothing and grid transfer

x1
ℓ

= x0
ℓ
− S−1

ℓ
(bℓ − Aℓx

0
ℓ
)

♦ Smoothing is restricted to the refined part V S

ℓ

Sℓ =

(

SS

ℓ
0

0 0

)

♦ Prolongation is embedding

♦ Restriction acts as identity on V L

ℓ

Iℓ−1
ℓ

uℓ = I
ℓ−1;S

ℓ
uS

ℓ
+ uL

ℓ
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The local V-cycle

pre-smoothing
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The local V-cycle

pre-smoothing −→ residual
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The local V-cycle

pre-smoothing −→ residual −→ post-smoothing
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The local V-cycle

♦ Pre-smoothing:

Rℓ(uℓ, bℓ) =

(

uS

ℓ
+ SS

ℓ
(bS

ℓ
− AS

ℓ
uS

ℓ
)

0

)

♦ Coarse grid correction

bℓ−1 = I
ℓ−1;S

ℓ
(bS

ℓ
− AS

ℓ
u

1;S

ℓ
) + bL

ℓ
− ALS

ℓ
u

1;S

ℓ

♦ Post-smoothing

b̃S

ℓ
= bS

ℓ
− ASL

ℓ
uL

c
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3D meshes

deal.II User Workshop 2006, Heidelberg – p.13



(C) Guido Kanschat

Results in 3D, cg

Q1-elements Q2-elements
global octant ball global octant ball

L n10 r n10 r n10 r n10 r n10 r n10 r

1 7 .04 11 .11
2 11 .11 10 .10 11 .11 14 .19 13 .17 14 .19
3 12 .13 13 .16 13 .16 15 .21 15 .21 15 .20
4 12 .14 14 .17 12 .14 15 .21 16 .23 14 .18
5 13 .15 13 .17 12 .13 15 .21 15 .21 13 .16
6 13 .15 13 .16 12 .15 15 .20 14 .17
7 13 .15 12 .14 14 .18
8 12 .14 14 .17
9 12 .13 13 .16
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Conclusions for discontinuous Galerkin

♦ Ingredients
♦ Level matrices built of cells strictly on level ℓ

♦ Smoothers for these matrices
♦ Interface matrices on refinement edge

♦ Multigrid works as usually

☛ No loss of performance

☛ Optimal complexity even for very locally refined
meshes
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Obstacles for continuous Galerkin

♦ Degrees of freedom on the interface

☛ Overlapping spaces (where to put V I

ℓ
?)

♦ Bilinear elements work moderately well

✘ Higher order did not work (implementation?)
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Solutions for continuous Galerkin

♦ local smoothing
♦ Smoothing on V S

ℓ
∪ V I

ℓ

☛ Level matrices include interface part

♦ global coarsening
♦ Every level covers the whole domain

☛ AL is the global matrix
♦ For TL−1, remove finest level and coarsen as many

cells once as mesh smoothing allows
♦ Do not coarsen beyond level zero
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Effects on structures

✘ Hanging nodes in level spaces

✘ Smoothers must handle hanging nodes

✘ Every grid cell may belong to several levels
☛ Levels can only be determined globally
☛ Several numberings of MGDoFs on each cell

☛ New structures and considerable effort needed
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Remarks on Higher Order Elements

♦ Qk elements of arbitrary order

♦ based on equidistant Lagrange interpolation

☛ condition number of cell matrices large (Q10: 107)
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Block smoothers for higher order elements

♦ Cell matrices of DG methods correspond to well-posed
BVP

☛ cell matrices are invertible

☛ block Gauß-Seidel smoother

☛ effect of ill conditioned cell matrix removed
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Convergence for higher order elements
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♦ behavior not yet analyzed (K./Karakashian in prep.)

♦ Dependence on σ suggests faster growth
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