Multilevel discontinuous Galerkin methods on locally refined meshes

Guido Kanschat

kanschat@dealii.org

Universität Heidelberg

Hierarchies

• Grids: $\mathbb{T}_0 \sqsubset \mathbb{T}_1 \cdots \sqsubset \mathbb{T}_L$

Finite element spaces

$$V_0 \subset V_1 \subset \cdots \subset V_L$$

of piecewise polynomial functions on \mathbb{T}_{ℓ} .

Components of Multigrid

Smoothers on each level

- Jacobi
- Gauß-Seidel
- Transfer between levels
 - Injection
 - L^2 -projection
- Solver on the coarsest level
 - small matrices

Complexity

- Multigrid is the only preconditioner for elliptic problems with optimal complexity
 - holds on uniformly refined meshes
 - Effort for level *L*:

$$n_L + \frac{n_{L-1}}{4} + \frac{n_{L-2}}{16} + \dots \le \frac{4}{3}n_L + \mathcal{O}(1)$$

- Aim: maintain optimal complexity on locally refined meshes
 - Mesh sizes do not grow geometrically
 - Cure: local smoothing

- Restrict the smoother to the refined part of a level
- Tasks:
 - Identify a "refined" subspace of the finite element space
 - Define a smoothing operator on this space
 - Maintain consistency with the whole space

Bilinear forms have support on grid cells

$$a(u,v) = \sum_{T} a_T(u,v)$$

- Finite element functions overlap several cells
- Degrees of freedom on faces/vertices

- Finite element basis with support inside cells
- No topological coupling between cells

$$V = \bigoplus V_T$$

Bilinear forms have support on cells and faces

$$a(u,v) = \sum_{T} a_T(u,v) + \sum_{F} a_F(u,v)$$

Splitting into subspaces

• Local smoothing: find
$$V_L = V_L^S \oplus V_L^L$$

+

 V_L^S

$$V_L^L$$

• Local smoothing: find $V_L = V_L^S \oplus V_L^L$

 \blacktriangleleft Continuous elements require smoothing on $V_L^S + V_L^I$.

$$V_{\ell} = V_{\ell}^S \oplus V_{\ell}^L,$$

where V_{ℓ}^{S} and V_{ℓ}^{L} have support in \mathbb{T}_{ℓ}^{S} and \mathbb{T}_{ℓ}^{L} , resp.

$$\begin{pmatrix} A_{\ell}^{S} & A_{\ell}^{SL} \\ A_{\ell}^{LS} & A_{\ell}^{L} \end{pmatrix} \begin{pmatrix} u_{\ell}^{S} \\ u_{\ell}^{L} \end{pmatrix} = \begin{pmatrix} b_{\ell}^{S} \\ b_{\ell}^{L} \end{pmatrix}$$

Matrices A_{ℓ}^{SL} and A_{ℓ}^{LS} correspond to refinement edge

Local smoothing and grid transfer

$$x_{\ell}^{1} = x_{\ell}^{0} - S_{\ell}^{-1}(b_{\ell} - A_{\ell}x_{\ell}^{0})$$

• Smoothing is restricted to the refined part V_{ℓ}^{S}

$$S_{\ell} = \begin{pmatrix} S_{\ell}^{S} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$$

- Prolongation is embedding
- Restriction acts as identity on V_{ℓ}^{L}

$$I_{\ell}^{\ell-1}u_{\ell} = I_{\ell}^{\ell-1;S}u_{\ell}^{S} + u_{\ell}^{L}$$

pre-smoothing

pre-smoothing \longrightarrow residual

Pre-smoothing:

$$R_{\ell}(u_{\ell}, b_{\ell}) = \begin{pmatrix} u_{\ell}^{S} + S_{\ell}^{S}(b_{\ell}^{S} - A_{\ell}^{S}u_{\ell}^{S}) \\ 0 \end{pmatrix}$$

Coarse grid correction

$$b_{\ell-1} = I_{\ell}^{\ell-1;S} (b_{\ell}^{S} - A_{\ell}^{S} u_{\ell}^{1;S}) + b_{\ell}^{L} - A_{\ell}^{LS} u_{\ell}^{1;S}$$

Post-smoothing

$$\tilde{b}_{\ell}^S = b_{\ell}^S - A_{\ell}^{SL} u_c^L$$

3D meshes

Results in 3D, cg

	Q_1 -elements						\mathbb{Q}_2 -elements					
	global		octant		ball		global		octant		ball	
L	n_{10}	r	n_{10}	r	n_{10}	r	n_{10}	r	n_{10}	r	n_{10}	r
1	7	.04					11	.11				
2	11	.11	10	.10	11	.11	14	.19	13	.17	14	.19
3	12	.13	13	.16	13	.16	15	.21	15	.21	15	.20
4	12	.14	14	.17	12	.14	15	.21	16	.23	14	.18
5	13	.15	13	.17	12	.13	15	.21	15	.21	13	.16
6	13	.15	13	.16	12	.15			15	.20	14	.17
7			13	.15	12	.14					14	.18
8					12	.14					14	.17
9					12	.13					13	.16

Conclusions for discontinuous Galerkin

Ingredients

- + Level matrices built of cells strictly on level ℓ
- Smoothers for these matrices
- Interface matrices on refinement edge
- Multigrid works as usually
- No loss of performance
- Optimal complexity even for very locally refined meshes

- Degrees of freedom on the interface
- Overlapping spaces (where to put V_{ℓ}^{I} ?)
 - Bilinear elements work moderately well
- ➤ Higher order did *not* work (implementation?)

Solutions for continuous Galerkin

local smoothing

- + Smoothing on $V_{\ell}^S \cup V_{\ell}^I$
- Level matrices include interface part
- global coarsening
 - Every level covers the whole domain
 - \blacktriangleleft A_L is the global matrix
 - For T_{L-1}, remove finest level and coarsen as many cells once as mesh smoothing allows
 - Do not coarsen beyond level zero

- ✗ Hanging nodes in level spaces
- X Smoothers must handle hanging nodes
- × Every grid cell may belong to several levels
 - Levels can only be determined globally
 - Several numberings of MGDoFs on each cell
- New structures and considerable effort needed

- \mathbb{Q}_k elements of arbitrary order
- based on equidistant Lagrange interpolation
- \leftarrow condition number of cell matrices large (\mathbb{Q}_{10} : 10⁷)

Block smoothers for higher order elements

- Cell matrices of DG methods correspond to well-posed BVP
- cell matrices are invertible
- block Gauß-Seidel smoother
- effect of ill conditioned cell matrix removed

Convergence for higher order elements

- behavior not yet analyzed (K./Karakashian in prep.)
- Dependence on σ suggests faster growth